The Hopf bifurcation theorem for parabolic equations with infinite delay
Mathematica Bohemica (1991)
- Volume: 116, Issue: 2, page 181-190
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPetzeltová, Hana. "The Hopf bifurcation theorem for parabolic equations with infinite delay." Mathematica Bohemica 116.2 (1991): 181-190. <http://eudml.org/doc/29290>.
@article{Petzeltová1991,
abstract = {The existence of the Hopf bifurcation for parabolic functional equations with delay of maximum order in spatial derivatives is proved. An application to an integrodifferential equation with a singular kernel is given.},
author = {Petzeltová, Hana},
journal = {Mathematica Bohemica},
keywords = {Hopf bifurcation; parabolic functional equation; infinite delay; singular kernel; singular kernel},
language = {eng},
number = {2},
pages = {181-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Hopf bifurcation theorem for parabolic equations with infinite delay},
url = {http://eudml.org/doc/29290},
volume = {116},
year = {1991},
}
TY - JOUR
AU - Petzeltová, Hana
TI - The Hopf bifurcation theorem for parabolic equations with infinite delay
JO - Mathematica Bohemica
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 116
IS - 2
SP - 181
EP - 190
AB - The existence of the Hopf bifurcation for parabolic functional equations with delay of maximum order in spatial derivatives is proved. An application to an integrodifferential equation with a singular kernel is given.
LA - eng
KW - Hopf bifurcation; parabolic functional equation; infinite delay; singular kernel; singular kernel
UR - http://eudml.org/doc/29290
ER -
References
top- M. G. Crandall P. H. Rabinowitz, 10.1007/BF00282325, Arch. Rat. Mech. Anal. 52 (1973), 161-180. (1973) MR0341212DOI10.1007/BF00282325
- M. G. Crandall P. H. Rabinowitz, 10.1007/BF00280827, Aгch. Rat. Mech. Anal. 67 (1977), 53-72. (1977) MR0467844DOI10.1007/BF00280827
- J. M. Cushing, 10.1007/978-3-642-93073-7, Lectuгe Notes in Biomath. Vol. 20, Springer-Verlag Berlin 1977. (1977) Zbl0363.92014MR0496838DOI10.1007/978-3-642-93073-7
- G. Da Prato A. Lunardi, Hopf bifurcation for nonlinear integrodifferential equations in Banach spaces with infinite delay, Indiana Univ. Math. Ј., Vol. 36, No 2 (1987). (1987) MR0891773
- J. K. Hale, Theory of functional differential equations, Springer-Verlag, New York 1977. (1977) Zbl0352.34001MR0508721
- D. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag Berlin-Heidelbeгg-New York 1981. (1981) Zbl0456.35001MR0610244
- H. C. Simpson, Stability of periodic solutions of nonlinear integrodifferential systems, SIAM Ј. Appl. Math. 38 (1980), З41-З6З. (1980) Zbl0457.45005MR0579423
- E. Sinestrari, 10.1016/0022-247X(85)90353-1, Ј. Math. Anal. Appl. 107 (1985), 16-66. (1985) MR0786012DOI10.1016/0022-247X(85)90353-1
- O. J. Staffans, Hopf bifurcation for an infinite delay functional equations, NATO ASI Series. Vol F 37, Springer-Verlag Berlin-Heidelberg 1987. (1987) MR0921919
- H. W. Stech, 10.1016/0022-247X(85)90163-5, Ј. Math. Anal. Appl. 109 (1985), 472-491. (1985) Zbl0592.34048MR0802908DOI10.1016/0022-247X(85)90163-5
- A. Tesei, Stability properties for partial Volterra integrodifferential equations, Аnn. Mat. Puгa Аppl. 126 (1980), 103-115. (1980) Zbl0463.45009MR0612355
- A. Torchinski, Real-variable methods in harmonic analysis, Аcademic Press INC, 1986. (1986) MR0869816
- Y. Yamada Y. Niikura, Bifurcation of periodic solutions for nonlinear parabolic equations with infinite delays, Funkc. Ekvac. 29 (1986), 309- ЗЗЗ. (1986) MR0904545
- K. Yoshida, 10.32917/hmj/1206133754, Hiгoshima Math. Ј. 12 (1982), 321-348. (1982) MR0665499DOI10.32917/hmj/1206133754
- K. Yoshida, K Kishimoto, Effect of two time delays on partially functional differential equations, Kumamoto Ј. Sci. (Math.) 15 (1983), 91-109. (1983) Zbl0572.35086MR0705720
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.