Prace Leonharda Eulera o kwadraturze koła i liczbie pi

Witold Więsław

Antiquitates Mathematicae (2008)

  • Volume: 2
  • ISSN: 1898-5203

Abstract

top
Prace Leonharda Eulera o kwadraturze koła i liczbie  pi Okres ostatnich 23 stuleci rozwoju matematyki można podzielić na trzy zachodzące na siebie epoki. Okres I - do XVII stulecia, w którym zagadnienia dotyczące liczby π i kwadratury rozwiązywane były geometrycznie, głównie w oparciu o pomysł Archimedesa: przybliżania obwodu (albo pola) koła wielokątami foremnymi wpisanymi lub opisanymi na tym kole. Okres II, w którym obliczano przybliżenia π w oparciu o różne wzory, w postaci szeregów, rzadziej - iloczynów nieskończonych. Okres ten trwa do dziś. Wreszcie III okres, rozpoczęty w połowie XVIII wieku, to badania jakościowe liczby π: jej niewymierność (J. - H. Lambert, 1767), niewymierność π2 (A. - M. Legendre, 1794), przestępność (F. Lindemann, 1882), wyznaczanie miary niewymierności, miary przestępności π, czy też próby sklasyfikowania tej liczby w odpowiednim zbiorze liczb przestępnych (klasyfikacja Mahlera).

How to cite

top

Witold Więsław. "Prace Leonharda Eulera o kwadraturze koła i liczbie pi." Antiquitates Mathematicae 2 (2008): null. <http://eudml.org/doc/293024>.

@article{WitoldWięsław2008,
abstract = {Prace Leonharda Eulera o kwadraturze koła i liczbie  pi Okres ostatnich 23 stuleci rozwoju matematyki można podzielić na trzy zachodzące na siebie epoki. Okres I - do XVII stulecia, w którym zagadnienia dotyczące liczby π i kwadratury rozwiązywane były geometrycznie, głównie w oparciu o pomysł Archimedesa: przybliżania obwodu (albo pola) koła wielokątami foremnymi wpisanymi lub opisanymi na tym kole. Okres II, w którym obliczano przybliżenia π w oparciu o różne wzory, w postaci szeregów, rzadziej - iloczynów nieskończonych. Okres ten trwa do dziś. Wreszcie III okres, rozpoczęty w połowie XVIII wieku, to badania jakościowe liczby π: jej niewymierność (J. - H. Lambert, 1767), niewymierność π2 (A. - M. Legendre, 1794), przestępność (F. Lindemann, 1882), wyznaczanie miary niewymierności, miary przestępności π, czy też próby sklasyfikowania tej liczby w odpowiednim zbiorze liczb przestępnych (klasyfikacja Mahlera).},
author = {Witold Więsław},
journal = {Antiquitates Mathematicae},
keywords = {},
language = {eng},
pages = {null},
title = {Prace Leonharda Eulera o kwadraturze koła i liczbie pi},
url = {http://eudml.org/doc/293024},
volume = {2},
year = {2008},
}

TY - JOUR
AU - Witold Więsław
TI - Prace Leonharda Eulera o kwadraturze koła i liczbie pi
JO - Antiquitates Mathematicae
PY - 2008
VL - 2
SP - null
AB - Prace Leonharda Eulera o kwadraturze koła i liczbie  pi Okres ostatnich 23 stuleci rozwoju matematyki można podzielić na trzy zachodzące na siebie epoki. Okres I - do XVII stulecia, w którym zagadnienia dotyczące liczby π i kwadratury rozwiązywane były geometrycznie, głównie w oparciu o pomysł Archimedesa: przybliżania obwodu (albo pola) koła wielokątami foremnymi wpisanymi lub opisanymi na tym kole. Okres II, w którym obliczano przybliżenia π w oparciu o różne wzory, w postaci szeregów, rzadziej - iloczynów nieskończonych. Okres ten trwa do dziś. Wreszcie III okres, rozpoczęty w połowie XVIII wieku, to badania jakościowe liczby π: jej niewymierność (J. - H. Lambert, 1767), niewymierność π2 (A. - M. Legendre, 1794), przestępność (F. Lindemann, 1882), wyznaczanie miary niewymierności, miary przestępności π, czy też próby sklasyfikowania tej liczby w odpowiednim zbiorze liczb przestępnych (klasyfikacja Mahlera).
LA - eng
KW -
UR - http://eudml.org/doc/293024
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.