Asymptotic behavior of semigroups of nonlinear contractions in Hilbert spaces

Simeon Reich

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1974)

  • Volume: 56, Issue: 6, page 866-872
  • ISSN: 0392-7881

How to cite

top

Reich, Simeon. "Asymptotic behavior of semigroups of nonlinear contractions in Hilbert spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 56.6 (1974): 866-872. <http://eudml.org/doc/293765>.

@article{Reich1974,
author = {Reich, Simeon},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {6},
number = {6},
pages = {866-872},
publisher = {Accademia Nazionale dei Lincei},
title = {Asymptotic behavior of semigroups of nonlinear contractions in Hilbert spaces},
url = {http://eudml.org/doc/293765},
volume = {56},
year = {1974},
}

TY - JOUR
AU - Reich, Simeon
TI - Asymptotic behavior of semigroups of nonlinear contractions in Hilbert spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1974/6//
PB - Accademia Nazionale dei Lincei
VL - 56
IS - 6
SP - 866
EP - 872
LA - eng
UR - http://eudml.org/doc/293765
ER -

References

top
  1. BRÉZIS, HAIM (1973) - Opérateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert. North-Holland Publishing Company, Amsterdam. 
  2. BRÉZIS, H. and PAZY, A. (1970) - Semigroups of nonlinear contractions on convex sets, «J. Functional Analysis», 6, 237-281. Zbl0209.45503MR448185DOI10.1016/0022-1236(70)90060-1
  3. BRÉZIS, H. and PAZY, A. (1970) - Accretive sets and differential equations in Banach spaces, «Israel J. Math.», 8, 367-385. MR275243DOI10.1007/BF02798683
  4. CORDUNEANU, ADRIAN (1972) - A note on the minimum property of cl (R(A)) for a monotone mapping in a real Hilbert space, «Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur.», 53, 56-59. Zbl0262.47044MR328681
  5. CRANDALL, M. G. and LIGGETT, T. M. (1971) - Generation of semigroups of nonlinear transformations on general Banach spaces, «Amer. J. Math.», 93, 265-298. Zbl0226.47038MR287357DOI10.2307/2373376
  6. CRANDALL, MICHEAL G. and PAZY, AMNON (1969) - Semigroups of nonlinear contractions and dissipative sets, «J. Functional Analysis», 3, 376-418. Zbl0182.18903MR243383DOI10.1016/0022-1236(69)90032-9
  7. KOMURA, YUKIO (1969) - Differentiability of nonlinear semigroups, «J. Math. Soc. Japan», 21, 375-402. Zbl0193.11004MR250118DOI10.2969/jmsj/02130375
  8. MIYADERA, ISAO (1971) - Some remarks on semigroups of nonlinear operators, «Tôhoku Math. J.», 23, 245-258. MR296746DOI10.2748/tmj/1178242643
  9. PAZY, A. (1971) - Asymptotic behavior of contractions in Hilbert space, «Israel J. Math.», 9, 235-240. Zbl0225.54032MR282276DOI10.1007/BF02771588
  10. REICH, SIMEON (1972) - Remarks on fixed points, «Atti Accad. Naz. Lincei, Rend. Cl. Sc. Fis. Mat. Natur.», 52, 599-697. Zbl0256.47043MR331139
  11. REICH, SIMEON - Asymptotic behavior of semigroups of nonlinear contractions in Banach spaces, in preparation. Zbl0337.47027
  12. ROCKAFELLAR, R. T. (1970) - On the virtual convexity of the domain and range of a nonlinear maximal monotone operator, «Math. Ann.», 183, 81-90. Zbl0181.42202MR259697DOI10.1007/BF01359698
  13. VALENTINE, P. A. (1945) - A Lipschitz condition preserving extension for a vector function, «Amer. J. Math.», 67, 83-93. Zbl0061.37507MR11702DOI10.2307/2371917

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.