Eigenfunctions of the Laplace-Beltrami Operator, and Isoperimetric and Isocapacitary Inequalities
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 1, page 167-190
- ISSN: 0392-4041
Access Full Article
topHow to cite
topCianchi, Andrea. "Eigenfunctions of the Laplace-Beltrami Operator, and Isoperimetric and Isocapacitary Inequalities." Bollettino dell'Unione Matematica Italiana 6.1 (2013): 167-190. <http://eudml.org/doc/294030>.
@article{Cianchi2013,
author = {Cianchi, Andrea},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {167-190},
publisher = {Unione Matematica Italiana},
title = {Eigenfunctions of the Laplace-Beltrami Operator, and Isoperimetric and Isocapacitary Inequalities},
url = {http://eudml.org/doc/294030},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Cianchi, Andrea
TI - Eigenfunctions of the Laplace-Beltrami Operator, and Isoperimetric and Isocapacitary Inequalities
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/2//
PB - Unione Matematica Italiana
VL - 6
IS - 1
SP - 167
EP - 190
LA - eng
UR - http://eudml.org/doc/294030
ER -
References
top- ALVINO, A. - CIANCHI, A. - MAZ'YA, V. G. - MERCALDO, A., Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1017-1054 Zbl1200.35105MR2659156DOI10.1016/j.anihpc.2010.01.010
- BAIDER, A., Noncompact Riemannian manifolds with discrete spectra, J. Diff. Geom.14 (1979), 41-57. Zbl0411.58022MR577877
- BERGER, M. - GAUDUCHON, P. - MAZET, E., Le spectre d'une variété Riemannienne, Lecture notes in Mathematics194, Springer-Verlag, Berlin, 1971. MR282313
- BENJAMINI, I. - CAO, J., A new isoperimetric theorem for surfaces of variable curvature, Duke Math. J.85 (1996), 359-396. Zbl0886.53031MR1417620DOI10.1215/S0012-7094-96-08515-4
- BIRMAN, M. S. - SOLOMJAK, M. Z., Spectral theory of self-adjoint operators in Hilbert space, D. Reidel Publishing Company, Dordrecht, 1986. MR1192782
- BOURGAIN, J., Geodesic restrictions and -estimates for eigenfunctions of Riemannian surfaces, Amer. Math. Soc. Tranl.226 (2009), 27-25. Zbl1189.58015MR2500507DOI10.1090/trans2/226/03
- BROOKS, B., On the spectrum of non-compact manifolds with finite volume, Math. Zeit.9 (1984), 425-432. Zbl0537.58040MR757481DOI10.1007/BF01161957
- BROOKS, B., The bottom of the spectrum of a Riemannian covering, J. Reine Angew. Math.357 (1985), 101-114. Zbl0553.53027MR783536DOI10.1515/crll.1985.357.101
- BURAGO, YU. D. - ZALGALLER, V. A., Geometric inequalities, Springer-Verlag, Berlin, 1988. MR936419DOI10.1007/978-3-662-07441-1
- BURENKOV, V. I. - DAVIES, E. B., Spectral stability of the Neumann Laplacian, J. Diff. Eq.186 (2002), 485-508. Zbl1042.35035MR1942219DOI10.1016/S0022-0396(02)00033-5
- CHAVEL, I., Eigenvalues in Riemannian geometry, Academic Press, New York, 1984. Zbl0551.53001MR768584
- CHAVEL, I. - FELDMAN, E. A., Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds, Duke Math. J.64 (1991), 473-499. Zbl0753.58031MR1141283DOI10.1215/S0012-7094-91-06425-2
- CHEEGER, J., A lower bound for the smallest eigevalue of the Laplacian, in Problems in analysis, 195-199, Princeton Univ. Press, Princeton, 1970. MR402831
- CHITI, G., A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators, Zeit. Angew. Math. Phys. (ZAMP) 33 (1982), 143-148. Zbl0508.35063MR652928DOI10.1007/BF00948319
- CHUNG, F. - GRIGOR'YAN, A. - YAU, S.-T., Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs, Comm. Anal. Geom.8 (2000), 969-1026. Zbl1001.58022MR1846124DOI10.4310/CAG.2000.v8.n5.a2
- CIANCHI, A., On relative isoperimetric inequalities in the plane, Boll. Un. Mat. Ital.3-B (1989), 289-326. Zbl0674.49030MR997998
- CIANCHI, A., A sharp form of Poincaré type inequalities on balls and spheres, Z. Angew. Math. Phys. (ZAMP) 40 (1989), 558-569. Zbl0707.53034MR1008923DOI10.1007/BF00944807
- CIANCHI, A., Moser-Trudinger inequalities without boundary conditions and isoperimetric problems, Indiana Univ. Math. J.54 (2005), 669-705. Zbl1097.46016MR2151230DOI10.1512/iumj.2005.54.2589
- CIANCHI, A. - MAZ'YA, V. G., Neumann problems and isocapacitary inequalities, J. Math. Pures Appl.89 (2008), 71-105. Zbl1146.35041MR2378090DOI10.1016/j.matpur.2007.10.001
- CIANCHI, A. - MAZ'YA, V. G., On the discreteness of the spectrum of the Laplacian on complete Riemannian manifolds, J. Diff. Geom.87 (2011), 469-491. MR2819545
- CIANCHI, A. - MAZ'YA, V. G., Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds, Amer. J. Math., to appear. MR3068397DOI10.1353/ajm.2013.0028
- CIANCHI, A. - MAZ'YA, V. G., Boundedness of solutions to the Schrödinger equation under Neumann boundary conditions, J. Math. Pures Appl.98 (2012), 654-688. MR2994697DOI10.1016/j.matpur.2012.05.007
- COULHON, T. - GRIGOR'YAN, A. - LEVIN, D., On isoperimetric profiles of product spaces, Comm. Anal. Geom.11 (2003), 85-120. Zbl1085.53027MR2016197DOI10.4310/CAG.2003.v11.n1.a5
- COURANT, R. - HILBERT, D., Methoden der mathematischen Physik, Springer, Berlin, 1937. Zbl63.0449.05MR344038
- DAVIES, E. B. - SIMON, B., Spectral properties of the Neumann Laplacian of horns, Geom. Funct. Anal.2 (1992), 105-117. Zbl0749.35024MR1143665DOI10.1007/BF01895707
- DE GIORGI, E., Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, (Italian) Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I 5 (1958) 33-44. Zbl0116.07901MR98331
- DONNELLY, H., Bounds for eigenfunctions of the Laplacian on compact Riemannian manifolds, J. Funct. Anal.187 (2001), 247-261. Zbl0991.58006MR1867351DOI10.1006/jfan.2001.3817
- DONNELLY, H., Eigenvalue estimates for certain noncompact manifolds, Michigan Math. J.31 (1984), 349-357. Zbl0591.58033MR767614DOI10.1307/mmj/1029003079
- DONNELLY, H. - LI, P., Pure point spectrum and negative curvature for noncompact manifolds, Duke Math. J.46 (1979), 497-503. Zbl0416.58025MR544241
- ESCOBAR, J. F., On the spectrum of the Laplacian on complete Riemannian manifolds, Comm. Part. Diff. Equat.11 (1986), 63-85. Zbl0585.58046MR814547DOI10.1080/03605308608820418
- GALLOT, S., Inégalités isopérimétriques et analitiques sur les variétés riemanniennes, Asterisque163 (1988), 31-91. MR999971
- GRIGOR'YAN, A., On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds, Mat. Sbornik128 (1985), 354-363 (Russian); English translation: Math. USSR Sb.56 (1987), 349-358.
- GRIGOR'YAN, A., Isoperimetric inequalities and capacities on Riemannian manifolds, in The Maz'ya anniversary collection, Vol. 1 (Rostock, 1998), 139-153, Oper. Theory Adv. Appl., 109, Birkhuser, Basel, 1999. MR1747869
- GRIMALDI, R. - PANSU, P., Calibrations and isoperimetric profiles, Amer. J. Math.129 (2007), 315-350. Zbl1121.53034MR2306037DOI10.1353/ajm.2007.0010
- HAIASZ, P. - KOSKELA, P., Isoperimetric inequalites and imbedding theorems in irregular domains, J. London Math. Soc.58 (1998), 425-450. MR1668136DOI10.1112/S0024610798006346
- HEBEY, E., Nonlinear analysis on manifolds: Sobolev spaces and inequalities, American Math. Soc., Providence, 1999. Zbl0981.58006MR1688256
- HEMPEL, R. - SECO, L. - SIMON, B., The essential spectrum of Neumann Laplacians on some bounded singular domains, J. Funct. Anal.102 (1991), 448-483. Zbl0741.35043MR1140635DOI10.1016/0022-1236(91)90130-W
- HOFFMANN-OSTENHOF, M. - HOFFMANN-OSTENHOF, T. - NADIRASHVILI, N., On the multiplicity of eigenvalues of the Laplacian on surfaces, Ann. Global Anal. Geom.17 (1999), 43-48. Zbl0923.35109MR1674331DOI10.1023/A:1006595115793
- JAKSIC, V. - MOLCHANOV, S. - SIMON, B., Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps, J. Funct. Anal.106 (1992), 59-79. Zbl0783.35040MR1163464DOI10.1016/0022-1236(92)90063-O
- KILPELÄINEN, T. - MALÝ, J., Sobolev inequalities on sets with irregular boundaries, Z. Anal. Anwendungen19 (2000), 369-380. MR1768998DOI10.4171/ZAA/956
- KLEINE, R., Discreteness conditions for the Laplacian on complete non-compact Riemannian manifolds, Math. Zeit.198 (1988), 127-141. Zbl0622.53024MR938034DOI10.1007/BF01183044
- KLEINE, R., Warped products with discrete spectra, Results Math.15 (1989), 81-103. Zbl0669.58030MR979446DOI10.1007/BF03322449
- KLEINER, B., An isoperimetric comparison theorem, Invent. Math.108 (1992), 37-47. Zbl0770.53031MR1156385DOI10.1007/BF02100598
- LABUTIN, D. A., Embedding of Sobolev spaces on Hölder domains, Proc. Steklov Inst. Math.227 (1999), 163-172 (Russian); English translation: Trudy Mat. Inst.227 (1999), 170-179. MR1784315
- LIONS, P.-L. - PACELLA, F., Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc.109 (1990), 477-485. Zbl0717.52008MR1000160DOI10.2307/2048011
- MALYÂ, J. - ZIEMER, W. P., Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, 1997. MR1461542DOI10.1090/surv/051
- MAZ'YA, V. G., Classes of regions and imbedding theorems for function spaces, Dokl. Akad. Nauk. SSSR133 (1960), 527-530 (Russian); English translation: Soviet Math. Dokl.1 (1960), 882-885. MR126152
- MAZ'YA, V. G., Some estimates of solutions of second-order elliptic equations, Dokl. Akad. Nauk. SSSR137 (1961), 1057-1059 (Russian); English translation: Soviet Math. Dokl.2 (1961), 413-415. MR131054
- MAZ'YA, V. G., On p-conductivity and theorems on embedding certain functional spaces into a C-space, Dokl. Akad. Nauk SSSR, 140 (1961), 299-302 (Russian). MR157224
- MAZ'YA, V. G., On the solvability of the Neumann problem, Dokl. Akad. Nauk SSSR, 147 (1962), 294-296 (Russian). MR144058
- MAZ'YA, V. G., The Neumann problem in regions with nonregular boundaries, Sibirsk. Mat. Ž.9 (1968), 1322-1350 (Russian). MR239270
- MAZ'YA, V. G., On weak solutions of the Dirichlet and Neumann problems, Trusdy Moskov. Mat. Obšč.20 (1969), 137-172 (Russian); English translation: Trans. Moscow Math. Soc.20 (1969), 135-172 MR259329
- MAZ'YA, V. G., Sobolev spaces with applications to elliptic partial differential equations, Springer, Heidelberg, 2011. MR2777530DOI10.1007/978-3-642-15564-2
- MORGAN, F. - HOWARDS, H. - HUTCHINGS, M., The isoperimetric problem on surfaces of revolution of decreasing Gauss curvature, Trans. Amer. Math. Soc, 352 (2000), 4889-4909. Zbl0976.53082MR1661278DOI10.1090/S0002-9947-00-02482-X
- MORGAN, F. - JOHNSON, D. L., Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J.49 (2000), 1017-1041. Zbl1021.53020MR1803220DOI10.1512/iumj.2000.49.1929
- NADIRASHVILI, N., Isoperimetric inequality for the second eigenvalue of a sphere, J. Diff. Geom.61 (2002), 335-340. Zbl1071.58024MR1972149
- PAYNE, L. E. - RAYNER, M. E., An isoperimetric inequality for the first eigenfunction in the fixed membrane problem, Z. Angew. Math. Phys.23 (1972), 13-15. Zbl0241.73080MR313649DOI10.1007/BF01593198
- PITTET, CH., The isoperimetric profile of homogeneous Riemannian manifolds, J. Diff. Geom.54 (2000), 255-302. Zbl1035.53069MR1818180
- REED, M. - SIMON, B., Analysis of Operators IV, Academic Press, New York, 1972.
- RITORÉ, M. , Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces, Comm. Anal. Geom.9 (2001), 1093-1138. Zbl1018.53003MR1883725DOI10.4310/CAG.2001.v9.n5.a5
- RÖLKE, W., Uber den Laplace-Operator auf Riemannschen Mannigfaltigkeiten mit diskontinuierlichen Gruppen, Math. Nachr.21 (1960), 132-149.
- SALOFF-COSTE, L., Sobolev inequalities in familiar and unfamiliar settings, in Sobolev spaces in mathematics, Vol I, Sobolev type inequalities, V.G. Maz'ya editor, Springer, 2009. Zbl1165.26011MR2508847DOI10.1007/978-0-387-85648-3_11
- SMITH, H. F. - SOGGE, C. D., On the norm of spectral clusters for compact manifolds with boundary, Acta Math.198 (2007), 107-153. Zbl1189.58017MR2316270DOI10.1007/s11511-007-0014-z
- SOGGE, C. D., Lectures on eigenfunctions of the Laplacian, Topics in mathematical analysis, 337-360, Ser. Anal. Appl. Comput., 3, World Sci. Publ., Hackensack, NJ, 2008. Zbl1170.35071MR2462960DOI10.1142/9789812811066_0011
- SOGGE, C. D. - ZELDITCH, S., Riemannian manifolds with maximal eigenfunction growth, Duke Math. J.114 (2002), 387-437. Zbl1018.58010MR1924569DOI10.1215/S0012-7094-02-11431-8
- STRICHARTZ, R. S., Analysis of the Laplacian on complete Riemannian manifolds, J. Funct. Anal.52 (1983), 48-79. Zbl0515.58037MR705991DOI10.1016/0022-1236(83)90090-3
- YAU, S. T., Isoperimetric constants and the first eigenvalue of a compact manifold, Ann. Sci. Ecole Norm. Sup.8 (1975), 487-507. Zbl0325.53039MR397619
- ZIEMER, W. P., Weakly differentiable functions, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.