Isoperimetric constants and the first eigenvalue of a compact riemannian manifold
Annales scientifiques de l'École Normale Supérieure (1975)
- Volume: 8, Issue: 4, page 487-507
- ISSN: 0012-9593
Access Full Article
topHow to cite
topYau, Shing-Tung. "Isoperimetric constants and the first eigenvalue of a compact riemannian manifold." Annales scientifiques de l'École Normale Supérieure 8.4 (1975): 487-507. <http://eudml.org/doc/81968>.
@article{Yau1975,
author = {Yau, Shing-Tung},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {4},
pages = {487-507},
publisher = {Elsevier},
title = {Isoperimetric constants and the first eigenvalue of a compact riemannian manifold},
url = {http://eudml.org/doc/81968},
volume = {8},
year = {1975},
}
TY - JOUR
AU - Yau, Shing-Tung
TI - Isoperimetric constants and the first eigenvalue of a compact riemannian manifold
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1975
PB - Elsevier
VL - 8
IS - 4
SP - 487
EP - 507
LA - eng
UR - http://eudml.org/doc/81968
ER -
References
top- [1] M. BERGER, P. GAUDUCHON, et E. MAZET, Le spectre d'une variété riemannienne (Lecture Notes in Math., N°. 194, Springer). Zbl0223.53034MR43 #8025
- [2] R. BISHOP and R. CRISTTENDEN, Geometry of Manifolds, Academic Press, 1964. Zbl0132.16003
- [3] J. D. BURAGO and V. A. ZALGALLER, Isoperimetric Problems for Regions on a Surface Having Restricted Width (Proceedings of Stek. Inst. Math., N°. 76, 1965.) Zbl0167.50802MR34 #1972
- [4] I. CHAVEL and E. FELDMAN, The First Eigenvalue of the Laplacian on Manifolds of Non-Negative Curvature (to appear). Zbl0291.53021
- [5] J. CHEEGER, The Relation Between the Laplacian and the Diameter for Manifolds of Non-Negative Curvature (Arch. der Math., Vol. 19, 1968, p. 558-560). Zbl0177.50201MR38 #6503
- [6] J. CHEEGER, A Lower Bound for the Smallest Eigenvalue of the Laplacian, In “Problems in Analysis, a symposium in honor of S. Bochner”, Princeton University Press, 1970. Zbl0212.44903
- [7] S. Y. CHENG, Eigenfunctions and Eigenvalues of Laplacian (to ppear in the Proceedings of Symposium on Differential Geometry). Zbl0308.35076
- [8] S. Y. CHENG, Eigenvalue Comparison Theorems and its Geometric Applications (Math. Z., Vol. 143, 1975, p. 289-297.) Zbl0329.53035MR51 #14170
- [9] L. KEEN, Collars on Riemann Surfaces, In “Discontinuous Groups and Riemann Surfaces”, edited by by GREENBERG, Princeton University Press, 1974, p. 263-268. Zbl0304.30014MR52 #738
- [10] A. HUBER, On the Isoperimetric Inequality on Surfaces of Variable Gaussian Curvature (Ann. of Math., Vol. 60, 1954, p. 237-247). Zbl0056.15801MR16,508d
- [11] J. HERSCH, Caractérisation variationnelle d'une somme de valeurs propres consécutives (C. R. Acad. Sc., t. 252, 1961, série A, p. 1714-1716). Zbl0096.08602MR23 #A3362
- [12] E. MAZET, Une majoration de λ1 du type de Cheeger (C. R. Acad. Sc., t. 277, série A, 1973). Zbl0264.53021MR50 #14581
- [13] H. P. MCKEAN, An Upper Bound to the Spectrum on a Manifold of Negative Curvature (J. of Diff. Geom., Vol. 4, 1970, p. 359-366). Zbl0197.18003MR42 #1009
- [14] H. FEDERER, Geometric Measure Theory, Springer, 1969. Zbl0176.00801MR41 #1976
- [15] F. WARNER, Extensions of the Rauch Comparison Theorem to Submanifolds (Trans. Amer. Math. Soc., Vol. 122, 1966, p. 341-356). Zbl0139.15601MR34 #759
- [16] D. HOFFMAN, and J. SPRUCK, Sobolev and Isoperimetric Inequalities for Riemannian Submanifolds (to appear). Zbl0295.53025
- [17] J. MICHAEL, and L. SIMON, Sobolev and Mean Value Inequalities on Generalized Submanifolds of Rn (Comm. Pure and Appl. Math., 1973, p. 361-379). Zbl0256.53006MR49 #9717
- [18] L. GREEN, A Theorem of E. Hopf (Mich. Math. J., Vol., 5, 1958, p. 31-34). Zbl0134.39601MR20 #4300
- [19] J. CHEEGER, and D. GROMOLL, The Splitting Theorem for Manifolds of Non-Negative Ricci Curvature (J. Diff. Geom., Vol. 6, 1971, p. 119-128). Zbl0223.53033MR46 #2597
- [20] J. MILNOR, A Note on Curvature and Fundamental Group (J. Diff. Geom., Vol. 2, 1968, p. 1-8). Zbl0162.25401MR38 #636
- [21] H. S. RUSE, A. G. WALKER, and T. J. WILLMORE, Harmonic Spaces, Edizioni Cremonese, Roma. Zbl0134.39202
- [22] A. C. ALLAMIGEON, Propriétés globales des espaces riemanniens harmoniques (Ann. Inst. Fourier, Vol. 15, N°. 2, 1965, p. 91-132). Zbl0178.55903MR33 #6549
- [23] C. B. MORREY, Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966. Zbl0142.38701MR34 #2380
- [24] W. KLINGBERG, Contributions to Riemannian Geometry in the Large (Ann. Math., Vol. 69, 1959, p. 654-666). Zbl0133.15003MR21 #4445
Citations in EuDML Documents
top- Christopher B. Croke, Some isoperimetric inequalities and eigenvalue estimates
- Peter Li, On the Sobolev constant and the -spectrum of a compact riemannian manifold
- Paul C. Yang, Shing-Tung Yau, Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds
- Olli Martio, V. Miklyukov, M. Vuorinen, Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry
- Sylvestre Gallot, Minorations sur le des variétés riemanniennes
- Emmanuel Hebey, Meilleures constantes et inégalités de Sobolev optimales sur les variétés riemanniennes compactes
- Peter Buser, A note on the isoperimetric constant
- Andrea Cianchi, Eigenfunctions of the Laplace-Beltrami Operator, and Isoperimetric and Isocapacitary Inequalities
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.