A Variational Approach to Gradient Flows in Metric Spaces
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 3, page 765-780
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topSegatti, Antonio. "A Variational Approach to Gradient Flows in Metric Spaces." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 765-780. <http://eudml.org/doc/294052>.
@article{Segatti2013,
abstract = {In this note we report on a new variational principle for Gradient Flows in metric spaces. This new variational formulation consists in a functional defined on entire trajectories whose minimizers converge, in the case in which the energy is geodesically convex, to curves of maximal slope. The key point in the proof is a reformulation of the problem in terms of a dynamic programming principle combined with suitable a priori estimates on the minimizers. The abstract result is applicable to a large class of evolution PDEs, including Fokker Plack equation, drift diffusion and Heat flows in metric-measure spaces.},
author = {Segatti, Antonio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {765-780},
publisher = {Unione Matematica Italiana},
title = {A Variational Approach to Gradient Flows in Metric Spaces},
url = {http://eudml.org/doc/294052},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Segatti, Antonio
TI - A Variational Approach to Gradient Flows in Metric Spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 765
EP - 780
AB - In this note we report on a new variational principle for Gradient Flows in metric spaces. This new variational formulation consists in a functional defined on entire trajectories whose minimizers converge, in the case in which the energy is geodesically convex, to curves of maximal slope. The key point in the proof is a reformulation of the problem in terms of a dynamic programming principle combined with suitable a priori estimates on the minimizers. The abstract result is applicable to a large class of evolution PDEs, including Fokker Plack equation, drift diffusion and Heat flows in metric-measure spaces.
LA - eng
UR - http://eudml.org/doc/294052
ER -
References
top- AMBROSIO, L. - GIGLI, N. - SAVARÉ, G., Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008. Second edition. MR2401600
- AMBROSIO, L. - GIGLI, N. - SAVARÉ, G., Calculus and heat flow in Metric-Measure spaces and applications to spaces with Ricci bounds from below, preprint (2011). MR3152751DOI10.1007/s00222-013-0456-1
- BARDI, M. - CAPUZZO-DOLCETTA, I., Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems & Control: Foundations & Applications. Birkhäuser, 1997. Zbl0890.49011MR1484411DOI10.1007/978-0-8176-4755-1
- BRÉZIS, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50), North-Holland Publishing Co., Amsterdam, 1973. Zbl0252.47055
- BRÉZIS, H. - EKELAND, I., Un principe variationnel associé à certaines équations paraboliques. Le cas indépendant du temps, C. R. Acad. Sci. Paris Sér. A-B, 282, (1976), Aii, A971-A974. Zbl0332.49032MR637214
- CONTI, S. - ORTIZ, M., Minimum principles for the trajectories of systems governed by rate problems, J. Mech. Phys. Solids, 56 (2008), 1885-1904. Zbl1162.74369MR2410326DOI10.1016/j.jmps.2007.11.006
- CRANDALL, M. - PAZY, A., Semi-groups of nonlinear contractions and dissipative sets, J. Functional Analysis, 3 (1969), 376-418. Zbl0182.18903MR243383DOI10.1016/0022-1236(69)90032-9
- DE GIORGI, E. - MARINO, A. - TOSQUES, M., Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68 (1980), 180-187. Zbl0465.47041MR636814
- DE GIORGI, E., Conjectures concerning some evolution problems, A celebration of John F. Nash, Jr., Duke Math. J., 81 (1996), 255-268. MR1395405DOI10.1215/S0012-7094-96-08114-4
- Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108, (1994), x+90.
- GHOUSSOUB, N., A theory of anti-selfdual Lagrangians: dynamical case, C. R. Math. Acad. Sci. Paris, 340 (2005), 325-330. Zbl1070.49029MR2121900DOI10.1016/j.crma.2004.12.008
- JORDAN, R. - KINDERLEHRER, D. - OTTO, F., The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. Zbl0915.35120MR1617171DOI10.1137/S0036141096303359
- KÖMURA, Y., Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507. MR216342DOI10.2969/jmsj/01940493
- LIONS, J. L., Sur certaines équations paraboliques non linéaires, Bull. Soc. Math. France, 93 (1965), 155-175. Zbl0132.10601MR194760
- LIONS, J. L. - MAGENES, E., Non-homogeneous boundary value problems and applications. Vol. I, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York, 1972. Zbl0223.35039MR350177
- MIELKE, A. - ORTIZ, M., A class of minimum principles for characterizing the trajectories of dissipative systems, ESAIM Control Optim. Calc. Var., 14 (2008), 494-516. Zbl1357.49043MR2434063DOI10.1051/cocv:2007064
- MIELKE, A. - STEFANELLI, U., Weighted energy-dissipation functionals for gradient flows, ESAIM Control Optim. Calc. Var., 17 (2011), 52-85. Zbl1218.35007MR2775186DOI10.1051/cocv/2009043
- NAYROLES, B., Deux théorèmes de minimum pour certains systèmes dissipatifs, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), Aiv, A1035-A1038. Zbl0345.73037MR418609
- NOCHETTO, R. H. - SAVARÉ, G. - VERDI, C., A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math., 53 (2000), 525-589. Zbl1021.65047MR1737503DOI10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
- OTTO, F., The geometry of dissipative evolution: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. Zbl0984.35089MR1842429DOI10.1081/PDE-100002243
- ROSSI, R. - SAVARÉ, G. - SEGATTI, A. - STEFANELLI, U., A variational principle for gradient flows in metric spaces, C. R. Acad. Sci. Paris Sér. I Math., 349 (2011), 1225-1228. Zbl1236.49065MR2861989DOI10.1016/j.crma.2011.11.002
- ROSSI, R. - SAVARÉ, G. - SEGATTI, A. - STEFANELLI, U., Weighted-energy-dissipation functionals for gradient flows in metric spaces, in preparation (2011). MR2763076DOI10.1016/j.matpur.2010.10.011
- SERRA, E. - TILLI, P., Nonlinear wave equations as limits of convex minimization problems: proof of a conjecture by De Giorgi, Ann. of Math. (2), 175 (2012), 3, 1551-1574. Zbl1251.49019MR2912711DOI10.4007/annals.2012.175.3.11
- SPADARO, E. N. - STEFANELLI, U., A variational view at the time-dependent minimal surface equationJ. Evol. Equ., 11 (2011), 793-809. Zbl1246.35117MR2861306DOI10.1007/s00028-011-0111-5
- STEFANELLI, U., The Brezis-Ekeland principle for doubly nonlinear equations, SIAM J. Control Optim., 47 (2008), 1615-1642. Zbl1194.35214MR2425653DOI10.1137/070684574
- STEFANELLI, U., The De Giorgi conjecture on elliptic regularization, Math. Models Methods Appl. Sci., 21 (2011), 1377-1394. Zbl1228.35023MR2819200DOI10.1142/S0218202511005350
- VISINTIN, A., A new approach to evolution, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 233-238. Zbl0977.35142MR1817368DOI10.1016/S0764-4442(00)01825-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.