Weighted energy-dissipation functionals for gradient flows

Alexander Mielke; Ulisse Stefanelli

ESAIM: Control, Optimisation and Calculus of Variations (2011)

  • Volume: 17, Issue: 1, page 52-85
  • ISSN: 1292-8119

Abstract

top
We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV14 (2008) 494–516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from [S. Conti and M. Ortiz, J. Mech. Phys. Solids56 (2008) 1885–1904.].

How to cite

top

Mielke, Alexander, and Stefanelli, Ulisse. "Weighted energy-dissipation functionals for gradient flows." ESAIM: Control, Optimisation and Calculus of Variations 17.1 (2011): 52-85. <http://eudml.org/doc/276333>.

@article{Mielke2011,
abstract = { We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV14 (2008) 494–516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from [S. Conti and M. Ortiz, J. Mech. Phys. Solids56 (2008) 1885–1904.]. },
author = {Mielke, Alexander, Stefanelli, Ulisse},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Variational principle; gradient flow; convergence; abstract evolution; microstructure evolution},
language = {eng},
month = {2},
number = {1},
pages = {52-85},
publisher = {EDP Sciences},
title = {Weighted energy-dissipation functionals for gradient flows},
url = {http://eudml.org/doc/276333},
volume = {17},
year = {2011},
}

TY - JOUR
AU - Mielke, Alexander
AU - Stefanelli, Ulisse
TI - Weighted energy-dissipation functionals for gradient flows
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2011/2//
PB - EDP Sciences
VL - 17
IS - 1
SP - 52
EP - 85
AB - We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV14 (2008) 494–516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from [S. Conti and M. Ortiz, J. Mech. Phys. Solids56 (2008) 1885–1904.].
LA - eng
KW - Variational principle; gradient flow; convergence; abstract evolution; microstructure evolution
UR - http://eudml.org/doc/276333
ER -

References

top
  1. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel, Switzerland (2005).  Zbl1090.35002
  2. C. Baiocchi and G. Savaré, Singular perturbation and interpolation. Math. Models Methods Appl. Sci.4 (1994) 557–570.  Zbl0818.47009
  3. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing, Leyden, The Netherlands (1976).  Zbl0328.47035
  4. J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften223. Springer-Verlag, Berlin, Germany (1976).  Zbl0344.46071
  5. M.A. Biot, Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys. Rev. (2)97 (1955) 1463–1469.  Zbl0065.42003
  6. D. Brézis, Classes d'interpolation associées à un opérateur monotone. C. R. Acad. Sci. Paris Sér. A-B276 (1973) A1553–A1556.  Zbl0257.46029
  7. H. Brezis, Monotonicity methods in Hilbert spaces and some application to nonlinear partial differential equations, in Contrib. to nonlin. functional analysis, Proc. Sympos. Univ. Wisconsin, Madison, Academic Press, New York, USA (1971) 101–156.  
  8. H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland Math. Studies5. Amsterdam, North-Holland (1973).  Zbl0252.47055
  9. H. Brezis, Interpolation classes for monotone operators, in Partial differential equations and related topics (Program, Tulane Univ., New Orleans, 1974), Lecture Notes in Math.446, Springer, Berlin, Germany (1975) 65–74.  
  10. H. Brezis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Le cas indépendant du temps. C. R. Acad. Sci. Paris Sér. A-B282 (1976) A971–A974.  Zbl0332.49032
  11. H. Brezis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B282 (1976) A1197–A1198.  Zbl0334.35040
  12. F.H. Clarke, Optimization and nonsmooth analysis, Classics in Applied Mathematics5. Second edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (1990).  Zbl0696.49002
  13. S. Conti and M. Ortiz, Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Phys. Solids56 (2008) 1885–1904.  Zbl1162.74369
  14. M.G. Crandall and A. Pazy, Semi-groups of nonlinear contractions and dissipative sets. J. Funct. Anal.3 (1969) 376–418.  Zbl0182.18903
  15. E. De Giorgi, Conjectures concerning some evolution problems. Duke Math. J.81 (1996) 255–268. A celebration of John F. Nash, Jr.  Zbl0874.35027
  16. N. Ghoussoub, Selfdual partial differential systems and their variational principles, Springer Monographs in Mathematics. Springer, New York, USA (2009).  Zbl05366497
  17. M.E. Gurtin, Variational principles in the linear theory of viscoelasticity. Arch. Ration. Mech. Anal.13 (1963) 179–191.  Zbl0123.40803
  18. M.E. Gurtin, Variational principles for linear elastodynamics. Arch. Ration. Mech. Anal.16 (1964) 34–50.  Zbl0124.40001
  19. M.E. Gurtin, Variational principles for linear initial value problems. Quart. Appl. Math.22 (1964) 252–256.  Zbl0173.37602
  20. I. Hlaváček, Variational principles for parabolic equations. Appl. Math.14 (1969) 278–297.  Zbl0182.13803
  21. T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc.108. American Mathematical Society, USA (1994).  Zbl0798.35066
  22. R.V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math.47 (1994) 405–435.  Zbl0803.49007
  23. Y. Kōmura, Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan19 (1967) 493–507.  Zbl0163.38302
  24. J.-L. Lions and E. Magenes, Non-homogeneus boundary value problems and applications1. Springer-Verlag, New York-Heidelberg (1972).  
  25. A. Marino, C. Saccon and M. Tosques, Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)16 (1989) 281–330.  Zbl0699.49015
  26. A. Mielke and M. Ortiz, A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM: COCV14 (2008) 494–516.  Zbl05309728
  27. A. Mielke and U. Stefanelli, A discrete variational principle for rate-independent evolution. Adv. Calc. Var.1 (2008) 399–431.  Zbl1180.35283
  28. B. Nayroles, Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B282 (1976) A1035–A1038.  Zbl0345.73037
  29. B. Nayroles, Un théorème de minimum pour certains systèmes dissipatifs. Variante hilbertienne. Travaux Sém. Anal. Convexe6 (1976) 22.  Zbl0372.46070
  30. R. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretization of nonlinear evolution equations. Comm. Pure Appl. Math.53 (2000) 525–589.  Zbl1021.65047
  31. M. Ortiz, E.A. Repetto and H. Si, A continuum model of kinetic roughening and coarsening in thin films. J. Mech. Phys. Solids47 (1999) 697–730.  Zbl0962.76009
  32. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations26 (2001) 101–174.  Zbl0984.35089
  33. R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM: COCV12 (2006) 564–614.  Zbl1116.34048
  34. R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)VII (2008) 97–169.  Zbl1183.35164
  35. R. Rossi, A. Segatti and U. Stefanelli, Attractors for gradient flows of non convex functionals and applications. Arch. Ration. Anal. Mech.187 (2008) 91–135.  Zbl1151.35010
  36. G. Savaré, Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl.6 (1996) 377–418.  Zbl0858.35073
  37. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. (4)146 (1987) 65–96.  Zbl0629.46031
  38. U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Contr. Opt.47 (2008) 1615–1642.  Zbl1194.35214
  39. U. Stefanelli, A variational principle for hardening elasto-plasticity. SIAM J. Math. Anal.40 (2008) 623–652.  Zbl1170.35453
  40. U. Stefanelli, The discrete Brezis-Ekeland principle. J. Convex Anal.16 (2009) 71–87.  Zbl1168.49020
  41. L. Tartar, Théorème d'interpolation non linéaire et applications. C. R. Acad. Sci. Paris Sér. A-B270 (1970) A1729–A1731.  Zbl0201.45201
  42. L. Tartar, Interpolation non linéaire et régularité. J. Funct. Anal.9 (1972) 469–489.  Zbl0241.46035
  43. H. Triebel, Interpolation theory, function spaces, differential operators. Second edition, Johann Ambrosius Barth, Heidelberg, Germany (1995).  
  44. A. Visintin, A new approach to evolution. C. R. Acad. Sci. Paris Sér. I Math.332 (2001) 233–238.  Zbl0977.35142
  45. A. Visintin, An extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl.18 (2008) 633–650.  Zbl1191.47067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.