The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest

Corinna Ulcigrai

Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2018)

  • Volume: 3, Issue: 1, page 13-30
  • ISSN: 2499-751X

Abstract

top
Mathematical billiards are an idealization of the game of pool. Many systems in physics, for example in mechanics or thermodynamics, can be described by mathematical billiards. Billiards provide also a mathematical model of chaotic behaviour, which may display several different chaotic features. How much chaotic a billiard is, depends mostly on the shape of the billiard table. In this introductory article on billiards we will focus especially on the behaviour of trajectories in a class of polygonal billiards (rational ones), both bounded and infinite (such as the well known Ehrenfest model). We will try to convey some of the mathematical tools which were used to study chaotic features, such as unfolding and renormalization.

How to cite

top

Ulcigrai, Corinna. "Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 3.1 (2018): 13-30. <http://eudml.org/doc/294061>.

@article{Ulcigrai2018,
abstract = {I biliardi matematici sono un'idealizzazione del gioco del biliardo. Molti modelli di sistemi fisici, ad esempio in meccanica e termodinamica, sono rappresentati da biliardi matematici. Dal punto di vista matematico, i biliardi costituiscono anche un modello molto ricco di comportamento caotico. Le proprietà matematiche che caratterizzano diversi gradi di caos dipendono fortemente dalla forma del tavolo da biliardo. In questo articolo introduttivo sui biliardi esploreremo soprattutto il comportamento delle traiettorie in certi biliardi poligonali (razionali ), sia finiti che infiniti (come il famoso modello di Ehrenfest ) e cercheremo di dare un'idea degli strumenti matematici usati per studiarli, dallo srotolamento alla rinormalizzazione.},
author = {Ulcigrai, Corinna},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {ita},
month = {4},
number = {1},
pages = {13-30},
publisher = {Unione Matematica Italiana},
title = {Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest},
url = {http://eudml.org/doc/294061},
volume = {3},
year = {2018},
}

TY - JOUR
AU - Ulcigrai, Corinna
TI - Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2018/4//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 13
EP - 30
AB - I biliardi matematici sono un'idealizzazione del gioco del biliardo. Molti modelli di sistemi fisici, ad esempio in meccanica e termodinamica, sono rappresentati da biliardi matematici. Dal punto di vista matematico, i biliardi costituiscono anche un modello molto ricco di comportamento caotico. Le proprietà matematiche che caratterizzano diversi gradi di caos dipendono fortemente dalla forma del tavolo da biliardo. In questo articolo introduttivo sui biliardi esploreremo soprattutto il comportamento delle traiettorie in certi biliardi poligonali (razionali ), sia finiti che infiniti (come il famoso modello di Ehrenfest ) e cercheremo di dare un'idea degli strumenti matematici usati per studiarli, dallo srotolamento alla rinormalizzazione.
LA - ita
UR - http://eudml.org/doc/294061
ER -

References

top
  1. AVILA, A. and HUBERT, P., Recurrence for the wind-tree model, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire. 
  2. DELECROIX, V. and ZORICH, A., Cries and whispers in wind-tree forests, preprint arXiv:1502.06405. 
  3. DELECROIX, V., HUBERT, P. and LELIÈVRE, S., Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), 1085-1110. Zbl1351.37159MR3297155DOI10.24033/asens.2234
  4. ESKIN, A., MIRZAKHANI, M. and MOHAMMADI, A., Isolation, equidistribution and orbit closures for the SL(2,R) action on moduli space, Ann. of Math. (2) 182 (2015), 673-721. Zbl1357.37040MR3418528DOI10.4007/annals.2015.182.2.7
  5. DETTMANN, C., Diffusion in the Lorentz Gas, Comm. Theoretical Physics62 (2014), no. 4, 521-540. Zbl1301.37022MR3363162DOI10.1088/0253-6102/62/4/10
  6. FRĄCZEK, K. and ULCIGRAI, C., Non-ergodic Z-periodic billiards and infinite translation surfaces, Invent. Math.197 (2014), 241-298. Zbl1316.37006MR3232007DOI10.1007/s00222-013-0482-z
  7. FRĄCZEK, K. and ULCIGRAI, C., Ergodic directions for billiards in a strip with periodically located obstacles, Comm. Math. Phys.327 (2014), no. 2, 643-663. Zbl1347.37071MR3183412DOI10.1007/s00220-014-2017-x
  8. FRIBERGER, M., Chaos on the mathematical table, Plus Magazine (2014) https://plus.maths.org/content/chaos-billiard-table 
  9. FRIBERGER, M., Caos sul tavolo da biliardo, traduzione di A. Betti, http://www.xlatangente.it/upload/files/XlaTangente_04_online_ulcigrai.pdf 
  10. FRIBERGER, M., Playing billiards on doughnuts, Plus Magazine (2014) https://plus.maths.org/content/billiards-donuts 
  11. GLASHOW, S. and MITTAG, L., Three rods on a ring and the triangular billiard, J. Statist. Phys.87 (1997), no. 3-4, 937-941. Zbl0952.70501MR1459047DOI10.1007/BF02181254
  12. GRAFFI, S., DEGLI ESPOSTI, M., Fisica Matematica Discreta, Unitext (2008). 
  13. HOOPER, P., HUBERT, P. and WEISS, B., Dynamics on the infinite staircase, Discrete Contin. Dyn. Syst.33 (2013), no. 9, 4341-4347. Zbl1306.37043MR3038066DOI10.3934/dcds.2013.33.4341
  14. HOOPER, P. and SCHWARTZ, R., Billiards in nearly isosceles triangles., J. Mod. Dyn.3 (2009), no. 2, 159-231. Zbl1203.37073MR2504742DOI10.3934/jmd.2009.3.159
  15. HOOPER, P. and SCHWARTZ, R., program McBilliards available at http://www.math.brown.edu/res/Billiards/index.html 
  16. KERCKHOFF, S., MASUR, H. and SMILLIE, J., Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293-311. Zbl0637.58010MR855297DOI10.2307/1971280
  17. KERCKHOFF, S., MASUR, H. and SMILLIE, J., Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293-311. Zbl0637.58010MR855297DOI10.2307/1971280
  18. LIVERANI, C.Transport in partially hyperbolic fast-slow systems, preprint arxiv:1803.06137. 
  19. MARKLOF, J.The low-density limit of the Lorentz gas: periodic, aperiodic and random, Proceedings of the International Congress of Mathematicians, Seoul 2014. Vol. III, 623-646, Kyung Moon Sa, Seoul, 2014. Zbl1373.82065MR3729044
  20. MASUR, H., Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169-200. Zbl0497.28012MR644018DOI10.2307/1971341
  21. MASUR, H. and SMILLIE, J., Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2) 134 (1991), no. 3, 455-543. Zbl0774.58024MR1135877DOI10.2307/2944356
  22. MASUR, H. and TABACHNIKOV, S., Rational billiards and flat structures, in Handbook of dynamical systems, Vol. 1A, 1015-1089, North-Holland, Amsterdam, 2002. Zbl1057.37034MR1928530DOI10.1016/S1874-575X(02)80015-7
  23. MATHEUS, C., Diffusion in Ehrenfest wind-tree model, in the blog Disquisitiones Mathematicae (posted on November 18, 2011) https://matheuscmss.wordpress.com/2011/11/18/diffusion-in-ehrenfest-wind-tree-model/ 
  24. RALSTON, D. and TROUBETZKOY, S., Ergodic infinite group extensions of geodesic flows on translation surfaces, J. Mod. Dyn.6 (2012), no. 4, 477-497. Zbl1262.37007MR3008407DOI10.3934/jmd.2012.6.477
  25. SMILLIE, J., The dynamics of billiard flows in rational polygons, Chapter IV in Encyclopaedia of Mathematical Sciences, 100. Mathematical Physics, I. Springer-Verlag, Berlin, 2000, 360-382. Zbl1323.37002
  26. TABACHNIKOV, S., Geometry and Billiards, Student Mathematical Library, vol. 30, American Mathematical Society, Providence, RI, 2005. MR2168892DOI10.1090/stml/030
  27. ULCIGRAI, C., Billiards, Pretzels... and Chaos and Mathematical billiards and Flows on Surfaces slides presentations, available on webpage https://people.maths.bris.ac.uk/ maxcu/Slides.html MR3821680
  28. VEECH, W., Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), no. 1, 201-242. Zbl0486.28014MR644019DOI10.2307/1971391
  29. ZORICH, A., Flat surfaces, Frontiers in number theory, physics, and geometry. I, 437-583, Springer, Berlin, 2006 (preprint arXiv:math/0609392 available on https://arxiv.org/abs/math/0609392). 
  30. ZORICH, A., Le théorème de la baguette magique de A. Eskin et M. Mirzakhani, Gazette des Mathématiciens no. 142 (2014), edited by SMF, English translation The Magic Wand Theorem of A. Eskin and M. Mirzakhani available on arXiv https://arxiv.org/pdf/1502.05654.pdf MR3278429

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.