On the structure of universal differentiability sets
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 3, page 315-326
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDymond, Michael. "On the structure of universal differentiability sets." Commentationes Mathematicae Universitatis Carolinae 58.3 (2017): 315-326. <http://eudml.org/doc/294079>.
@article{Dymond2017,
abstract = {A subset of $\mathbb \{R\}^\{d\}$ is called a universal differentiability set if it contains a point of differentiability of every Lipschitz function $f\colon \mathbb \{R\}^\{d\}\rightarrow \mathbb \{R\}$. We show that any universal differentiability set contains a ‘kernel’ in which the points of differentiability of each Lipschitz function are dense. We further prove that no universal differentiability set may be decomposed as a countable union of relatively closed, non-universal differentiability sets.},
author = {Dymond, Michael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {differentiability; Lipschitz functions; universal differentiability set; $\sigma $-porous set},
language = {eng},
number = {3},
pages = {315-326},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the structure of universal differentiability sets},
url = {http://eudml.org/doc/294079},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Dymond, Michael
TI - On the structure of universal differentiability sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 3
SP - 315
EP - 326
AB - A subset of $\mathbb {R}^{d}$ is called a universal differentiability set if it contains a point of differentiability of every Lipschitz function $f\colon \mathbb {R}^{d}\rightarrow \mathbb {R}$. We show that any universal differentiability set contains a ‘kernel’ in which the points of differentiability of each Lipschitz function are dense. We further prove that no universal differentiability set may be decomposed as a countable union of relatively closed, non-universal differentiability sets.
LA - eng
KW - differentiability; Lipschitz functions; universal differentiability set; $\sigma $-porous set
UR - http://eudml.org/doc/294079
ER -
References
top- Alberti G., Csörnyei M., Preiss D., Differentiability of Lipschitz functions, structure of null sets, and other problems, Proceedings of the International Congress of Mathematicians, volume 3, Hindustan Book Agency, New Delhi, 2010, pp. 1379–1394. Zbl1251.26010MR2827846
- Bugeaud Y., Dodson M.M., Kristensen S., 10.1093/qmath/hah043, Q.J. Math. 56 (2005), no. 3, 311–320. Zbl1204.11117MR2161245DOI10.1093/qmath/hah043
- Csörnyei M., Preiss D., Tišer J., 10.1155/AAA.2005.361, Abstr. Appl. Anal. 2005, no. 4, 361–373. Zbl1098.26010MR2202486DOI10.1155/AAA.2005.361
- Doré M., Maleva O., 10.1007/s00208-010-0613-4, Math. Ann. 351 (2011), no.3, 633–663. Zbl1239.46035MR2854108DOI10.1007/s00208-010-0613-4
- Doré M., Maleva O., 10.1016/j.jfa.2011.05.016, J. Funct. Anal. 261 (2011), no. 6, 1674–1710. Zbl1230.46035MR2813484DOI10.1016/j.jfa.2011.05.016
- Doré M., Maleva O., 10.1007/s11856-012-0014-3, Israel J. Math. 191 (2012), no. 2, 889–900. Zbl1281.46041MR3011499DOI10.1007/s11856-012-0014-3
- Dymond M., Differentiability and negligible sets in Banach spaces, PhD Thesis, University of Birmingham, 2014. MR3389522
- Dymond M., Maleva O., 10.1307/mmj/1472066151, Michigan Math. J. 65 (2016), no. 3, 613–636. Zbl1366.46029MR3542769DOI10.1307/mmj/1472066151
- Fowler T., Preiss D., 10.14321/realanalexch.34.1.0127, Real Anal. Exchange 34 (2009), no. 1, 127–138. Zbl1179.26010MR2527127DOI10.14321/realanalexch.34.1.0127
- Grafakos L., 10.1007/978-1-4939-1194-3, third edition, Graduate Texts in Mathematics, 249, Springer, New York, 2014. Zbl1336.00075MR3243734DOI10.1007/978-1-4939-1194-3
- Hájek P., Johanis M., Smooth Analysis in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 19, Walter de Gruyter, Berlin, 2014. Zbl1329.00102MR3244144
- Ives D.J., Preiss D., 10.1007/BF02810595, Israel J. Math. 115 (2000), no. 1, 343–353. Zbl0951.46019MR1749687DOI10.1007/BF02810595
- Maleva O., Preiss D., Cone unrectifiable sets and non-differentiability of Lipschitz functions, in preparation.
- Preiss D., 10.1016/0022-1236(90)90147-D, J. Funct. Anal. 91 (1990), no. 2, 312–345. Zbl0872.46026MR1058975DOI10.1016/0022-1236(90)90147-D
- Preiss D., Speight G., 10.1007/s00222-014-0520-5, Invent. Math. 199 (2014), no. 2, 517–559. Zbl1317.26011MR3302120DOI10.1007/s00222-014-0520-5
- Taylor S.J., Introduction to Measure and Integration, Cambridge University Press, Cambridge, 1973. Zbl0277.28001
- Zahorski Z., 10.24033/bsmf.1381, Bull. Soc. Math. France 74 (1946), 147–178. Zbl0061.11302MR0022592DOI10.24033/bsmf.1381
- Zajíček L., Sets of -porosity and sets of -porosity , Časopis Pěst. Mat. 101 (1976), no. 4, 350–359. Zbl0341.30026MR0457731
- Zelený M., Pelant J., The structure of the -ideal of -porous sets, Comment. Math. Univ. Carolin. 45 (2004), no. 1, 37–72. MR2076859
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.