On the exponential diophantine equation
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 645-653
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDu, Xiaoying. "On the exponential diophantine equation $x^y+y^x=z^z$." Czechoslovak Mathematical Journal 67.3 (2017): 645-653. <http://eudml.org/doc/294089>.
@article{Du2017,
abstract = {For any positive integer $D$ which is not a square, let $(u_1,v_1)$ be the least positive integer solution of the Pell equation $u^2-Dv^2=1,$ and let $h(4D)$ denote the class number of binary quadratic primitive forms of discriminant $4D$. If $D$ satisfies $2\nmid D$ and $v_1h(4D)\equiv 0 \hspace\{4.44443pt\}(\@mod \; D)$, then $D$ is called a singular number. In this paper, we prove that if $(x,y,z)$ is a positive integer solution of the equation $x^y+y^x=z^z$ with $2\mid z$, then maximum $\max \lbrace x,y,z\rbrace <480000$ and both $x$, $y$ are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions $(x,y,z)$.},
author = {Du, Xiaoying},
journal = {Czechoslovak Mathematical Journal},
keywords = {exponential diophantine equation; upper bound for solutions; singular number},
language = {eng},
number = {3},
pages = {645-653},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the exponential diophantine equation $x^y+y^x=z^z$},
url = {http://eudml.org/doc/294089},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Du, Xiaoying
TI - On the exponential diophantine equation $x^y+y^x=z^z$
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 645
EP - 653
AB - For any positive integer $D$ which is not a square, let $(u_1,v_1)$ be the least positive integer solution of the Pell equation $u^2-Dv^2=1,$ and let $h(4D)$ denote the class number of binary quadratic primitive forms of discriminant $4D$. If $D$ satisfies $2\nmid D$ and $v_1h(4D)\equiv 0 \hspace{4.44443pt}(\@mod \; D)$, then $D$ is called a singular number. In this paper, we prove that if $(x,y,z)$ is a positive integer solution of the equation $x^y+y^x=z^z$ with $2\mid z$, then maximum $\max \lbrace x,y,z\rbrace <480000$ and both $x$, $y$ are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions $(x,y,z)$.
LA - eng
KW - exponential diophantine equation; upper bound for solutions; singular number
UR - http://eudml.org/doc/294089
ER -
References
top- Bilu, Y., Hanrot, G., Voutier, P. M., 10.1515/crll.2001.080, J. Reine Angew. Math. 539 (2001), 75-122. (2001) Zbl0995.11010MR1863855DOI10.1515/crll.2001.080
- Birkhoff, G. D., Vandiver, H. S., 10.2307/2007263, Ann. of Math. (2) 5 (1904), 173-180. (1904) Zbl35.0205.01MR1503541DOI10.2307/2007263
- Buell, D. A., Computer computation of class groups of quadratic number fields, Congr. Numerantium 22 Conf. Proc. Numerical Mathematics and Computing, Winnipeg 1978 (1979), 3-12 McCarthy et al. (1979) Zbl0424.12001MR0541910
- Bugeaud, Y., 10.1017/S0305004199003692, Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381. (1999) Zbl0940.11019MR1713116DOI10.1017/S0305004199003692
- Deng, Y., Zhang, W., 10.1155/2014/186416, Abstr. Appl. Anal. 2014 (2014), Art. ID 186416, 4 pages. (2014) MR3240527DOI10.1155/2014/186416
- Le, M., 10.1006/jnth.1995.1138, J. Number Theory 55 (1995), 209-221. (1995) Zbl0852.11015MR1366571DOI10.1006/jnth.1995.1138
- Le, M., 10.1216/rmjm/1187453105, Rocky Mt. J. Math. (2007), 37 1181-1185. (2007) Zbl1146.11019MR2360292DOI10.1216/rmjm/1187453105
- Liu, Y. N., Guo, X. Y., A Diophantine equation and its integer solutions, Acta Math. Sin., Chin. Ser. 53 (2010), 853-856. (2010) Zbl1240.11066MR2722920
- Luca, F., Mignotte, M., 10.1216/rmjm/1022009287, Rocky Mt. J. Math. 30 (2000), 651-661. (2000) Zbl1014.11024MR1787004DOI10.1216/rmjm/1022009287
- Mollin, R. A., Williams, H. C., Computation of the class number of a real quadratic field, Util. Math. 41 (1992), 259-308. (1992) Zbl0757.11036MR1162532
- Mordell, L. J., Diophantine Equations, Pure and Applied Mathematics 30, Academic Press, London (1969). (1969) Zbl0188.34503MR0249355
- Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C., 10.1090/S0025-5718-00-01234-5, Math. Comput. 70 (2001), 70 1311-1328 corrig. ibid. 72 521-523 2003. (2001) Zbl0987.11065MR1933835DOI10.1090/S0025-5718-00-01234-5
- Wu, H., The application of BHV theorem to the Diophantine equation , Acta Math. Sin., Chin. Ser. 58 (2015), 679-684. (2015) Zbl06610974MR3443204
- Zhang, Z., Luo, J., Yuan, P., 10.4064/cm128-2-13, Colloq. Math. 128 (2012), 277-285. (2012) Zbl1297.11017MR3002356DOI10.4064/cm128-2-13
- Zhang, Z., Luo, J., Yuan, P., On the Diophantine equation , Chin. Ann. Math., Ser. A (2013), 34A 279-284. (2013) Zbl1299.11037MR3114411
- Zhang, Z., Yuan, P., 10.1142/S1793042112500467, Int. J. Number Theory 8 (2012), 813-821. (2012) Zbl1271.11040MR2904932DOI10.1142/S1793042112500467
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.