On the exponential diophantine equation x y + y x = z z

Xiaoying Du

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 3, page 645-653
  • ISSN: 0011-4642

Abstract

top
For any positive integer D which is not a square, let ( u 1 , v 1 ) be the least positive integer solution of the Pell equation u 2 - D v 2 = 1 , and let h ( 4 D ) denote the class number of binary quadratic primitive forms of discriminant 4 D . If D satisfies 2 D and v 1 h ( 4 D ) 0 ( mod D ) , then D is called a singular number. In this paper, we prove that if ( x , y , z ) is a positive integer solution of the equation x y + y x = z z with 2 z , then maximum max { x , y , z } < 480000 and both x , y are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions ( x , y , z ) .

How to cite

top

Du, Xiaoying. "On the exponential diophantine equation $x^y+y^x=z^z$." Czechoslovak Mathematical Journal 67.3 (2017): 645-653. <http://eudml.org/doc/294089>.

@article{Du2017,
abstract = {For any positive integer $D$ which is not a square, let $(u_1,v_1)$ be the least positive integer solution of the Pell equation $u^2-Dv^2=1,$ and let $h(4D)$ denote the class number of binary quadratic primitive forms of discriminant $4D$. If $D$ satisfies $2\nmid D$ and $v_1h(4D)\equiv 0 \hspace\{4.44443pt\}(\@mod \; D)$, then $D$ is called a singular number. In this paper, we prove that if $(x,y,z)$ is a positive integer solution of the equation $x^y+y^x=z^z$ with $2\mid z$, then maximum $\max \lbrace x,y,z\rbrace <480000$ and both $x$, $y$ are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions $(x,y,z)$.},
author = {Du, Xiaoying},
journal = {Czechoslovak Mathematical Journal},
keywords = {exponential diophantine equation; upper bound for solutions; singular number},
language = {eng},
number = {3},
pages = {645-653},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the exponential diophantine equation $x^y+y^x=z^z$},
url = {http://eudml.org/doc/294089},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Du, Xiaoying
TI - On the exponential diophantine equation $x^y+y^x=z^z$
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 645
EP - 653
AB - For any positive integer $D$ which is not a square, let $(u_1,v_1)$ be the least positive integer solution of the Pell equation $u^2-Dv^2=1,$ and let $h(4D)$ denote the class number of binary quadratic primitive forms of discriminant $4D$. If $D$ satisfies $2\nmid D$ and $v_1h(4D)\equiv 0 \hspace{4.44443pt}(\@mod \; D)$, then $D$ is called a singular number. In this paper, we prove that if $(x,y,z)$ is a positive integer solution of the equation $x^y+y^x=z^z$ with $2\mid z$, then maximum $\max \lbrace x,y,z\rbrace <480000$ and both $x$, $y$ are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions $(x,y,z)$.
LA - eng
KW - exponential diophantine equation; upper bound for solutions; singular number
UR - http://eudml.org/doc/294089
ER -

References

top
  1. Bilu, Y., Hanrot, G., Voutier, P. M., 10.1515/crll.2001.080, J. Reine Angew. Math. 539 (2001), 75-122. (2001) Zbl0995.11010MR1863855DOI10.1515/crll.2001.080
  2. Birkhoff, G. D., Vandiver, H. S., 10.2307/2007263, Ann. of Math. (2) 5 (1904), 173-180. (1904) Zbl35.0205.01MR1503541DOI10.2307/2007263
  3. Buell, D. A., Computer computation of class groups of quadratic number fields, Congr. Numerantium 22 Conf. Proc. Numerical Mathematics and Computing, Winnipeg 1978 (1979), 3-12 McCarthy et al. (1979) Zbl0424.12001MR0541910
  4. Bugeaud, Y., 10.1017/S0305004199003692, Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381. (1999) Zbl0940.11019MR1713116DOI10.1017/S0305004199003692
  5. Deng, Y., Zhang, W., 10.1155/2014/186416, Abstr. Appl. Anal. 2014 (2014), Art. ID 186416, 4 pages. (2014) MR3240527DOI10.1155/2014/186416
  6. Le, M., 10.1006/jnth.1995.1138, J. Number Theory 55 (1995), 209-221. (1995) Zbl0852.11015MR1366571DOI10.1006/jnth.1995.1138
  7. Le, M., 10.1216/rmjm/1187453105, Rocky Mt. J. Math. (2007), 37 1181-1185. (2007) Zbl1146.11019MR2360292DOI10.1216/rmjm/1187453105
  8. Liu, Y. N., Guo, X. Y., A Diophantine equation and its integer solutions, Acta Math. Sin., Chin. Ser. 53 (2010), 853-856. (2010) Zbl1240.11066MR2722920
  9. Luca, F., Mignotte, M., 10.1216/rmjm/1022009287, Rocky Mt. J. Math. 30 (2000), 651-661. (2000) Zbl1014.11024MR1787004DOI10.1216/rmjm/1022009287
  10. Mollin, R. A., Williams, H. C., Computation of the class number of a real quadratic field, Util. Math. 41 (1992), 259-308. (1992) Zbl0757.11036MR1162532
  11. Mordell, L. J., Diophantine Equations, Pure and Applied Mathematics 30, Academic Press, London (1969). (1969) Zbl0188.34503MR0249355
  12. Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C., 10.1090/S0025-5718-00-01234-5, Math. Comput. 70 (2001), 70 1311-1328 corrig. ibid. 72 521-523 2003. (2001) Zbl0987.11065MR1933835DOI10.1090/S0025-5718-00-01234-5
  13. Wu, H., The application of BHV theorem to the Diophantine equation x y + y x = z z , Acta Math. Sin., Chin. Ser. 58 (2015), 679-684. (2015) Zbl06610974MR3443204
  14. Zhang, Z., Luo, J., Yuan, P., 10.4064/cm128-2-13, Colloq. Math. 128 (2012), 277-285. (2012) Zbl1297.11017MR3002356DOI10.4064/cm128-2-13
  15. Zhang, Z., Luo, J., Yuan, P., On the Diophantine equation x y + y x = z z , Chin. Ann. Math., Ser. A (2013), 34A 279-284. (2013) Zbl1299.11037MR3114411
  16. Zhang, Z., Yuan, P., 10.1142/S1793042112500467, Int. J. Number Theory 8 (2012), 813-821. (2012) Zbl1271.11040MR2904932DOI10.1142/S1793042112500467

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.