Complete solution of the Diophantine equation
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 479-484
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCipu, Mihai. "Complete solution of the Diophantine equation $x^y+y^x=z^z$." Czechoslovak Mathematical Journal 69.2 (2019): 479-484. <http://eudml.org/doc/294782>.
@article{Cipu2019,
	abstract = {The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \mathbb \{N\}$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \lbrace x,y,z\rbrace  > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.},
	author = {Cipu, Mihai},
	journal = {Czechoslovak Mathematical Journal},
	keywords = {exponential Diophantine equation; sieving; modular computations},
	language = {eng},
	number = {2},
	pages = {479-484},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {Complete solution of the Diophantine equation $x^y+y^x=z^z$},
	url = {http://eudml.org/doc/294782},
	volume = {69},
	year = {2019},
}
TY  - JOUR
AU  - Cipu, Mihai
TI  - Complete solution of the Diophantine equation $x^y+y^x=z^z$
JO  - Czechoslovak Mathematical Journal
PY  - 2019
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 69
IS  - 2
SP  - 479
EP  - 484
AB  - The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \mathbb {N}$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \lbrace x,y,z\rbrace  > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
LA  - eng
KW  - exponential Diophantine equation; sieving; modular computations
UR  - http://eudml.org/doc/294782
ER  - 
References
top- Bugeaud, Y., 10.1017/S0305004199003692, Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381. (1999) Zbl0940.11019MR1713116DOI10.1017/S0305004199003692
- Deng, Y., Zhang, W., 10.1155/2014/186416, Abstr. Appl. Anal. 2014 (2014), Article ID 186416, 4 pages. (2014) MR3240527DOI10.1155/2014/186416
- Du, X., 10.21136/CMJ.2017.0645-15, Czech. Math. J. 67 (2017), 645-653. (2017) Zbl06770122MR3697908DOI10.21136/CMJ.2017.0645-15
- Mollin, R. A., Williams, H. C., Computation of the class number of a real quadratic field, Util. Math. 41 (1992), 259-308. (1992) Zbl0757.11036MR1162532
- The PARI-Group: PARI/GP version 2.3.5, Univ. Bordeaux (2010), Available at http://pari.math.u-bordeaux.fr/download.html. (2010)
- Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C., 10.1090/S0025-5718-00-01234-5, Math. Comput. 70 (2001), 1311-1328 corrigenda and addition ibid. 72 521-523 2003. (2001) Zbl0987.11065MR1933835DOI10.1090/S0025-5718-00-01234-5
- Wu, H. M., The application of the BHV theorem to the Diophantine equation , Acta Math. Sin., Chin. Ser. 58 (2015), Chinese 679-684. (2015) Zbl1349.11077MR3443204
- Zhang, Z., Luo, J., Yuan, P., On the Diophantine equation , Chin. Ann. Math., Ser. A 34 (2013), 279-284 Chinese. (2013) Zbl1299.11037MR3114411
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 