Complete solution of the Diophantine equation x y + y x = z z

Mihai Cipu

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 2, page 479-484
  • ISSN: 0011-4642

Abstract

top
The triples ( x , y , z ) = ( 1 , z z - 1 , z ) , ( x , y , z ) = ( z z - 1 , 1 , z ) , where z , satisfy the equation x y + y x = z z . In this paper it is shown that the same equation has no integer solution with min { x , y , z } > 1 , thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.

How to cite

top

Cipu, Mihai. "Complete solution of the Diophantine equation $x^y+y^x=z^z$." Czechoslovak Mathematical Journal 69.2 (2019): 479-484. <http://eudml.org/doc/294782>.

@article{Cipu2019,
abstract = {The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \mathbb \{N\}$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \lbrace x,y,z\rbrace > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.},
author = {Cipu, Mihai},
journal = {Czechoslovak Mathematical Journal},
keywords = {exponential Diophantine equation; sieving; modular computations},
language = {eng},
number = {2},
pages = {479-484},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete solution of the Diophantine equation $x^y+y^x=z^z$},
url = {http://eudml.org/doc/294782},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Cipu, Mihai
TI - Complete solution of the Diophantine equation $x^y+y^x=z^z$
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 479
EP - 484
AB - The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \mathbb {N}$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \lbrace x,y,z\rbrace > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
LA - eng
KW - exponential Diophantine equation; sieving; modular computations
UR - http://eudml.org/doc/294782
ER -

References

top
  1. Bugeaud, Y., 10.1017/S0305004199003692, Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381. (1999) Zbl0940.11019MR1713116DOI10.1017/S0305004199003692
  2. Deng, Y., Zhang, W., 10.1155/2014/186416, Abstr. Appl. Anal. 2014 (2014), Article ID 186416, 4 pages. (2014) MR3240527DOI10.1155/2014/186416
  3. Du, X., 10.21136/CMJ.2017.0645-15, Czech. Math. J. 67 (2017), 645-653. (2017) Zbl06770122MR3697908DOI10.21136/CMJ.2017.0645-15
  4. Mollin, R. A., Williams, H. C., Computation of the class number of a real quadratic field, Util. Math. 41 (1992), 259-308. (1992) Zbl0757.11036MR1162532
  5. The PARI-Group: PARI/GP version 2.3.5, Univ. Bordeaux (2010), Available at http://pari.math.u-bordeaux.fr/download.html. (2010) 
  6. Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C., 10.1090/S0025-5718-00-01234-5, Math. Comput. 70 (2001), 1311-1328 corrigenda and addition ibid. 72 521-523 2003. (2001) Zbl0987.11065MR1933835DOI10.1090/S0025-5718-00-01234-5
  7. Wu, H. M., The application of the BHV theorem to the Diophantine equation x y + y x = z z , Acta Math. Sin., Chin. Ser. 58 (2015), Chinese 679-684. (2015) Zbl1349.11077MR3443204
  8. Zhang, Z., Luo, J., Yuan, P., On the Diophantine equation x y - y x = z z , Chin. Ann. Math., Ser. A 34 (2013), 279-284 Chinese. (2013) Zbl1299.11037MR3114411

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.