On a class of -Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain
Communications in Mathematics (2017)
- Volume: 25, Issue: 1, page 13-20
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topShahrokhi-Dehkordi, M.S.. "On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain." Communications in Mathematics 25.1 (2017): 13-20. <http://eudml.org/doc/294093>.
@article{Shahrokhi2017,
abstract = {Let $\Omega \subset \mathbb \{R\}^n$ be a bounded starshaped domain and consider the $(p,q)$-Laplacian problem \begin\{align*\} -\Delta \_p u-\Delta \_q u = \lambda (\{\bf x\} )\vert u\vert ^\{p^\star -2\} u+\mu |u|^\{r-2\} u \end\{align*\}
where $\mu $ is a positive parameter, $1 < q \le p < n$, $r\ge p^\{\star \}$ and $p^\{\star \}:=\frac\{np\}\{n-p\}$ is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the $(p, q)$-Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.},
author = {Shahrokhi-Dehkordi, M.S.},
journal = {Communications in Mathematics},
keywords = {Quasi-linear elliptic problem; $(p,q)$-Laplacian operator; Critical Sobolev-Hardy exponent; Starshaped domain},
language = {eng},
number = {1},
pages = {13-20},
publisher = {University of Ostrava},
title = {On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain},
url = {http://eudml.org/doc/294093},
volume = {25},
year = {2017},
}
TY - JOUR
AU - Shahrokhi-Dehkordi, M.S.
TI - On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain
JO - Communications in Mathematics
PY - 2017
PB - University of Ostrava
VL - 25
IS - 1
SP - 13
EP - 20
AB - Let $\Omega \subset \mathbb {R}^n$ be a bounded starshaped domain and consider the $(p,q)$-Laplacian problem \begin{align*} -\Delta _p u-\Delta _q u = \lambda ({\bf x} )\vert u\vert ^{p^\star -2} u+\mu |u|^{r-2} u \end{align*}
where $\mu $ is a positive parameter, $1 < q \le p < n$, $r\ge p^{\star }$ and $p^{\star }:=\frac{np}{n-p}$ is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the $(p, q)$-Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.
LA - eng
KW - Quasi-linear elliptic problem; $(p,q)$-Laplacian operator; Critical Sobolev-Hardy exponent; Starshaped domain
UR - http://eudml.org/doc/294093
ER -
References
top- Benci, V., Cerami, G., Existence of positive solutions of the equation in , J. Funct. Anal., 88, 1990, 91-117, (1990) MR1033915
- Benci, V., D'Avenia, P., Fortunato, D., Pisani, L., 10.1007/s002050000101, Arch. Ration. Mech. Anal., 154, 4, 2000, 297-324, (2000) Zbl0973.35161MR1785469DOI10.1007/s002050000101
- Benci, V., Micheletti, A. M., Visetti, D., 10.1006/jdeq.2001.4155, J. Differ. Equ., 184, 2, 2002, 299-320, (2002) Zbl1157.35348MR1929880DOI10.1006/jdeq.2001.4155
- Candito, P., Marano, S. A., Perera, K., 10.1007/s00030-015-0353-y, Nonlinear Differ. Equ. Appl., 22, 2015, 1959-1972, (2015) Zbl1328.35053MR3415031DOI10.1007/s00030-015-0353-y
- Cherfils, L., Iĺyasov, Y., On the stationary solutions of generalized reaction diffusion equations with -Laplacian, Commun. Pure Appl. Anal., 4, 1, 2005, 9-22, (2005) Zbl1210.35090MR2126276
- Derrick, G. H., 10.1063/1.1704233, J. Math. Phys., 5, 1964, 1252-1254, (1964) MR0174304DOI10.1063/1.1704233
- Fife, P. C., 10.1007/978-3-642-93111-6, Lecture Notes in Biomathematics, 28, 1979, Springer, Berlin, (1979) Zbl0403.92004MR0527914DOI10.1007/978-3-642-93111-6
- Figueiredo, G. M., 10.1016/j.jmaa.2011.02.017, J. Math. Anal. Appl., 378, 2011, 507-518, (2011) MR2773261DOI10.1016/j.jmaa.2011.02.017
- Filippucci, R., Pucci, P., Robert, F., 10.1016/j.matpur.2008.09.008, J. Math. Pures Appl, 91, 2009, 156-177, (2009) MR2498753DOI10.1016/j.matpur.2008.09.008
- Ghoussoub, N., Yuan, C., 10.1090/S0002-9947-00-02560-5, Trans. Amer. Math. Soc., 352, 2000, 5703-5743, (2000) Zbl0956.35056MR1695021DOI10.1090/S0002-9947-00-02560-5
- Guedda, M., Véron, L., 10.1016/0362-546X(89)90020-5, Nonlinear Anal., 13, 1989, 879-902, (1989) Zbl0714.35032MR1009077DOI10.1016/0362-546X(89)90020-5
- Guo, Q., Han, J., Niu, P., 10.1016/j.na.2012.05.021, Nonlinear Analysis, 75, 2012, 5765-5786, (2012) Zbl1250.35083MR2948296DOI10.1016/j.na.2012.05.021
- Kang, D., 10.1016/j.jmaa.2007.10.058, J. Math. Anal. Appl., 341, 2008, 764-782, (2008) Zbl1137.35378MR2398246DOI10.1016/j.jmaa.2007.10.058
- Li, G. B., Liang, X., 10.1016/j.na.2009.01.066, Nonlinear Anal., 71, 2009, 2316-2334, (2009) MR2524439DOI10.1016/j.na.2009.01.066
- Li, Y., Ruf, B., Guo, Q., Niu, P., 10.1007/s10231-011-0213-2, Annali di Matematica, 192, 2013, 93-113, (2013) Zbl1292.35104MR3011325DOI10.1007/s10231-011-0213-2
- López, R., Constant Mean Curvature Surfaces with Boundary, 2013, Springer Monographs in Mathematics, (2013) Zbl1329.53099MR3098467
- Marano, S. A., Papageorgiou, N. S., 10.1016/j.na.2012.09.007, Nonlinear Anal., 77, 2013, 118-129, (2013) Zbl1260.35036MR2988766DOI10.1016/j.na.2012.09.007
- Shahrokhi-Dehkordi, M. S., Taheri, A., Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps, Journal of Convex Analysis, 17, 1, 2010, 69-79, (2010) Zbl1186.49033MR2642716
- Sun, M., 10.1016/j.jmaa.2011.08.030, J. Math. Anal. Appl., 386, 2, 2012, 661-668, (2012) Zbl1229.35089MR2834776DOI10.1016/j.jmaa.2011.08.030
- Wilhelmsson, H., 10.1103/PhysRevA.36.965, Phys. Rev. A, 36, 2, 1987, 965-966, (1987) MR0901723DOI10.1103/PhysRevA.36.965
- Yin, H., Yang, Z., 10.1016/j.jmaa.2011.04.090, J. Math. Anal. Appl., 382, 2011, 843-855, (2011) Zbl1222.35083MR2810836DOI10.1016/j.jmaa.2011.04.090
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.