An approximation theorem for solutions of degenerate semilinear elliptic equations
Communications in Mathematics (2017)
- Volume: 25, Issue: 1, page 21-34
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topCavalheiro, Albo Carlos. "An approximation theorem for solutions of degenerate semilinear elliptic equations." Communications in Mathematics 25.1 (2017): 21-34. <http://eudml.org/doc/294100>.
@article{Cavalheiro2017,
abstract = {The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.},
author = {Cavalheiro, Albo Carlos},
journal = {Communications in Mathematics},
keywords = {Degenerate semilinear elliptic equations; weighted Sobolev Spaces},
language = {eng},
number = {1},
pages = {21-34},
publisher = {University of Ostrava},
title = {An approximation theorem for solutions of degenerate semilinear elliptic equations},
url = {http://eudml.org/doc/294100},
volume = {25},
year = {2017},
}
TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - An approximation theorem for solutions of degenerate semilinear elliptic equations
JO - Communications in Mathematics
PY - 2017
PB - University of Ostrava
VL - 25
IS - 1
SP - 21
EP - 34
AB - The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.
LA - eng
KW - Degenerate semilinear elliptic equations; weighted Sobolev Spaces
UR - http://eudml.org/doc/294100
ER -
References
top- Cavalheiro, A. C., 10.1017/S0013091500000079, Proc. Edinb. Math. Soc., 45, 2002, 363-389, doi: 10.1017/S0013091500000079. (2002) Zbl1195.35021MR1912646DOI10.1017/S0013091500000079
- Cavalheiro, A. C., 10.1016/S0893-9659(04)90079-1, Appl. Math. Lett., 17, 2004, 387-391, doi:10.1016/S0893-9659(04)00043-6. (2004) Zbl1133.35351MR2045742DOI10.1016/S0893-9659(04)90079-1
- Cavalheiro, A. C., 10.1515/jaa-2014-0016, J. Appl. Anal., 20, 2, 2014, 145-154, doi:10.1515/jaa-2014-0016. (2014) Zbl1305.35076MR3284721DOI10.1515/jaa-2014-0016
- Cavalheiro, A. C., 10.4064/am41-1-8, Appl. Math. (Warsaw), 41, 1, 2014, 93-106, (2014) Zbl1324.35039MR3241062DOI10.4064/am41-1-8
- Cavalheiro, A. C., Existence and uniqueness of solutions for the Navier problems with degenerate nonlinear elliptic equations, Note Mat., 25, 2, 2015, 1-16, (2015) MR3483422
- Fabes, E., Kenig, C., Serapioni, R., 10.1080/03605308208820218, Comm. Partial Differential Equations, 7, 1982, 77-116, doi:10.1080/03605308208820218. (1982) Zbl0498.35042MR0643158DOI10.1080/03605308208820218
- Fernandes, J. C., Franchi, B., 10.4171/RMI/206, Rev. Mat. Iberoam., 12, 1996, 491-525, (1996) Zbl0859.35062MR1402676DOI10.4171/RMI/206
- Garcia-Cuerva, J., Francia, J. L. Rubio de, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116, 1985, (1985) MR0807149
- Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, 1993, Oxford Math. Monographs, Clarendon Press, (1993) Zbl0780.31001MR1207810
- Kufner, A., Weighted Sobolev Spaces, 1985, John Wiley & Sons, New York, (1985) Zbl0579.35021MR0802206
- Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc., 165, 1972, 207-226, (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
- Torchinsky, A., Real-Variable Methods in Harmonic Analysis, 1986, Academic Press, San Diego, (1986) Zbl0621.42001MR0869816
- Turesson, B. O., 10.1007/BFb0103912, 1736, 2000, Springer-Verlag, Lecture Notes in Math.. (2000) Zbl0949.31006MR1774162DOI10.1007/BFb0103912
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.