An approximation theorem for solutions of degenerate semilinear elliptic equations

Albo Carlos Cavalheiro

Communications in Mathematics (2017)

  • Volume: 25, Issue: 1, page 21-34
  • ISSN: 1804-1388

Abstract

top
The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.

How to cite

top

Cavalheiro, Albo Carlos. "An approximation theorem for solutions of degenerate semilinear elliptic equations." Communications in Mathematics 25.1 (2017): 21-34. <http://eudml.org/doc/294100>.

@article{Cavalheiro2017,
abstract = {The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.},
author = {Cavalheiro, Albo Carlos},
journal = {Communications in Mathematics},
keywords = {Degenerate semilinear elliptic equations; weighted Sobolev Spaces},
language = {eng},
number = {1},
pages = {21-34},
publisher = {University of Ostrava},
title = {An approximation theorem for solutions of degenerate semilinear elliptic equations},
url = {http://eudml.org/doc/294100},
volume = {25},
year = {2017},
}

TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - An approximation theorem for solutions of degenerate semilinear elliptic equations
JO - Communications in Mathematics
PY - 2017
PB - University of Ostrava
VL - 25
IS - 1
SP - 21
EP - 34
AB - The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.
LA - eng
KW - Degenerate semilinear elliptic equations; weighted Sobolev Spaces
UR - http://eudml.org/doc/294100
ER -

References

top
  1. Cavalheiro, A. C., 10.1017/S0013091500000079, Proc. Edinb. Math. Soc., 45, 2002, 363-389, doi: 10.1017/S0013091500000079. (2002) Zbl1195.35021MR1912646DOI10.1017/S0013091500000079
  2. Cavalheiro, A. C., 10.1016/S0893-9659(04)90079-1, Appl. Math. Lett., 17, 2004, 387-391, doi:10.1016/S0893-9659(04)00043-6. (2004) Zbl1133.35351MR2045742DOI10.1016/S0893-9659(04)90079-1
  3. Cavalheiro, A. C., 10.1515/jaa-2014-0016, J. Appl. Anal., 20, 2, 2014, 145-154, doi:10.1515/jaa-2014-0016. (2014) Zbl1305.35076MR3284721DOI10.1515/jaa-2014-0016
  4. Cavalheiro, A. C., 10.4064/am41-1-8, Appl. Math. (Warsaw), 41, 1, 2014, 93-106, (2014) Zbl1324.35039MR3241062DOI10.4064/am41-1-8
  5. Cavalheiro, A. C., Existence and uniqueness of solutions for the Navier problems with degenerate nonlinear elliptic equations, Note Mat., 25, 2, 2015, 1-16, (2015) MR3483422
  6. Fabes, E., Kenig, C., Serapioni, R., 10.1080/03605308208820218, Comm. Partial Differential Equations, 7, 1982, 77-116, doi:10.1080/03605308208820218. (1982) Zbl0498.35042MR0643158DOI10.1080/03605308208820218
  7. Fernandes, J. C., Franchi, B., 10.4171/RMI/206, Rev. Mat. Iberoam., 12, 1996, 491-525, (1996) Zbl0859.35062MR1402676DOI10.4171/RMI/206
  8. Garcia-Cuerva, J., Francia, J. L. Rubio de, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116, 1985, (1985) MR0807149
  9. Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, 1993, Oxford Math. Monographs, Clarendon Press, (1993) Zbl0780.31001MR1207810
  10. Kufner, A., Weighted Sobolev Spaces, 1985, John Wiley & Sons, New York, (1985) Zbl0579.35021MR0802206
  11. Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc., 165, 1972, 207-226, (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  12. Torchinsky, A., Real-Variable Methods in Harmonic Analysis, 1986, Academic Press, San Diego, (1986) Zbl0621.42001MR0869816
  13. Turesson, B. O., 10.1007/BFb0103912, 1736, 2000, Springer-Verlag, Lecture Notes in Math.. (2000) Zbl0949.31006MR1774162DOI10.1007/BFb0103912

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.