Semifields and a theorem of Abhyankar

Vítězslav Kala

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 3, page 267-273
  • ISSN: 0010-2628

Abstract

top
Abhyankar proved that every field of finite transcendence degree over or over a finite field is a homomorphic image of a subring of the ring of polynomials [ T 1 , , T n ] (for some n depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings.

How to cite

top

Kala, Vítězslav. "Semifields and a theorem of Abhyankar." Commentationes Mathematicae Universitatis Carolinae 58.3 (2017): 267-273. <http://eudml.org/doc/294111>.

@article{Kala2017,
abstract = {Abhyankar proved that every field of finite transcendence degree over $\mathbb \{Q\}$ or over a finite field is a homomorphic image of a subring of the ring of polynomials $\mathbb \{Z\}[T_1,\dots , T_n]$ (for some $n$ depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings.},
author = {Kala, Vítězslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Abhyankar's construction; semiring; semifield; finitely generated; additively idempotent},
language = {eng},
number = {3},
pages = {267-273},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Semifields and a theorem of Abhyankar},
url = {http://eudml.org/doc/294111},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Kala, Vítězslav
TI - Semifields and a theorem of Abhyankar
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 3
SP - 267
EP - 273
AB - Abhyankar proved that every field of finite transcendence degree over $\mathbb {Q}$ or over a finite field is a homomorphic image of a subring of the ring of polynomials $\mathbb {Z}[T_1,\dots , T_n]$ (for some $n$ depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings.
LA - eng
KW - Abhyankar's construction; semiring; semifield; finitely generated; additively idempotent
UR - http://eudml.org/doc/294111
ER -

References

top
  1. Abhyankar S.S., 10.1090/S0002-9939-2011-10731-7, Proc. Amer. Math. Soc. 139 (2011), 3067–3082. Zbl1227.14004MR2811263DOI10.1090/S0002-9939-2011-10731-7
  2. El Bashir R., Hurt J., Jančařík A., Kepka T., 10.1006/jabr.2000.8483, J. Algebra 236 (2001), 277–306. Zbl0976.16034MR1808355DOI10.1006/jabr.2000.8483
  3. Busaniche M., Cabrer L., Mundici D., 10.1515/form.2011.059, Forum Math. 24 (2012), 253–271. Zbl1277.06007MR2900005DOI10.1515/form.2011.059
  4. Di Nola A., Gerla B., 10.1090/conm/377/06988, Contemp. Math. 377 (2005), 131–144. Zbl1081.06009MR2149001DOI10.1090/conm/377/06988
  5. Di Nola A., Lettieri A., 10.1007/BF01057937, Studia Logica 53 (1994), 417–432. MR1302453DOI10.1007/BF01057937
  6. Golan J.S., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999. Zbl0947.16034MR1746739
  7. Ježek J., Kala V., Kepka T., 10.1515/form.2011.068, Forum Math. 24 (2012), 379–397. Zbl1254.16041MR2900012DOI10.1515/form.2011.068
  8. Kala V., Lattice-ordered groups finitely generated as semirings, J. Commut. Alg., to appear, 16 pp., arxiv:1502.01651. MR3685049
  9. Kala V., Kepka T., A note on finitely generated ideal-simple commutative semirings, Comment. Math. Univ. Carolin. 49 (2008), 1–9. Zbl1192.16045MR2432815
  10. Kala V., Kepka T., Korbelář M., Notes on commutative parasemifields, Comment. Math. Univ. Carolin. 50 (2009), 521–533. Zbl1203.16038MR2583130
  11. Kala V., Korbelář M., Idempotence of commutative semifields, preprint, 16 pp. 
  12. Kepka T., Korbelář M., 10.1515/ms-2016-0203, Math. Slovaca 66 (2016), 1059–1064. MR3602603DOI10.1515/ms-2016-0203
  13. Korbelář M., Landsmann G., 10.1142/S0219498817500384, J. Algebra Appl. 16 (2017), 1750038, 22 pp., DOI: 10.1142/S0219498817500384. Zbl1358.16038MR3608425DOI10.1142/S0219498817500384
  14. Korbelář M., 10.1007/s00233-016-9827-4, Semigroup Forum, to appear; DOI: 10.1007/s00233-016-9827-4. MR3715842DOI10.1007/s00233-016-9827-4
  15. Leichtnam E., 10.1007/s00208-017-1527-1, to appear in Math. Ann., DOI: 10.1007/s00208-017-1527-1. MR3694657DOI10.1007/s00208-017-1527-1
  16. Litvinov G.L., The Maslov dequantization, idempotent and tropical mathematics: a brief introduction, arXiv:math/0507014. Zbl1102.46049MR2148995
  17. Monico C.J., Semirings and semigroup actions in public-key cryptography, PhD Thesis, University of Notre Dame, USA, 2002. MR2703068
  18. Mundici D., 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63. MR0819173DOI10.1016/0022-1236(86)90015-7
  19. Weinert H.J., 10.1007/BF02020799, Acta Math. Acad. Sci. Hungar. 13 (1962), 365–378. Zbl0125.01002MR0146108DOI10.1007/BF02020799
  20. Weinert H.J., Wiegandt R., 10.1007/BF01879738, Period. Math. Hungar. 32 (1996), 147–162. Zbl0896.12001MR1407915DOI10.1007/BF01879738
  21. Zumbrägel J., Public-key cryptography based on simple semirings, PhD Thesis, Universität Zürich, Switzerland, 2008. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.