Semifields and a theorem of Abhyankar
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 3, page 267-273
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKala, Vítězslav. "Semifields and a theorem of Abhyankar." Commentationes Mathematicae Universitatis Carolinae 58.3 (2017): 267-273. <http://eudml.org/doc/294111>.
@article{Kala2017,
abstract = {Abhyankar proved that every field of finite transcendence degree over $\mathbb \{Q\}$ or over a finite field is a homomorphic image of a subring of the ring of polynomials $\mathbb \{Z\}[T_1,\dots , T_n]$ (for some $n$ depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings.},
author = {Kala, Vítězslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Abhyankar's construction; semiring; semifield; finitely generated; additively idempotent},
language = {eng},
number = {3},
pages = {267-273},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Semifields and a theorem of Abhyankar},
url = {http://eudml.org/doc/294111},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Kala, Vítězslav
TI - Semifields and a theorem of Abhyankar
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 3
SP - 267
EP - 273
AB - Abhyankar proved that every field of finite transcendence degree over $\mathbb {Q}$ or over a finite field is a homomorphic image of a subring of the ring of polynomials $\mathbb {Z}[T_1,\dots , T_n]$ (for some $n$ depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings.
LA - eng
KW - Abhyankar's construction; semiring; semifield; finitely generated; additively idempotent
UR - http://eudml.org/doc/294111
ER -
References
top- Abhyankar S.S., 10.1090/S0002-9939-2011-10731-7, Proc. Amer. Math. Soc. 139 (2011), 3067–3082. Zbl1227.14004MR2811263DOI10.1090/S0002-9939-2011-10731-7
- El Bashir R., Hurt J., Jančařík A., Kepka T., 10.1006/jabr.2000.8483, J. Algebra 236 (2001), 277–306. Zbl0976.16034MR1808355DOI10.1006/jabr.2000.8483
- Busaniche M., Cabrer L., Mundici D., 10.1515/form.2011.059, Forum Math. 24 (2012), 253–271. Zbl1277.06007MR2900005DOI10.1515/form.2011.059
- Di Nola A., Gerla B., 10.1090/conm/377/06988, Contemp. Math. 377 (2005), 131–144. Zbl1081.06009MR2149001DOI10.1090/conm/377/06988
- Di Nola A., Lettieri A., 10.1007/BF01057937, Studia Logica 53 (1994), 417–432. MR1302453DOI10.1007/BF01057937
- Golan J.S., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999. Zbl0947.16034MR1746739
- Ježek J., Kala V., Kepka T., 10.1515/form.2011.068, Forum Math. 24 (2012), 379–397. Zbl1254.16041MR2900012DOI10.1515/form.2011.068
- Kala V., Lattice-ordered groups finitely generated as semirings, J. Commut. Alg., to appear, 16 pp., arxiv:1502.01651. MR3685049
- Kala V., Kepka T., A note on finitely generated ideal-simple commutative semirings, Comment. Math. Univ. Carolin. 49 (2008), 1–9. Zbl1192.16045MR2432815
- Kala V., Kepka T., Korbelář M., Notes on commutative parasemifields, Comment. Math. Univ. Carolin. 50 (2009), 521–533. Zbl1203.16038MR2583130
- Kala V., Korbelář M., Idempotence of commutative semifields, preprint, 16 pp.
- Kepka T., Korbelář M., 10.1515/ms-2016-0203, Math. Slovaca 66 (2016), 1059–1064. MR3602603DOI10.1515/ms-2016-0203
- Korbelář M., Landsmann G., 10.1142/S0219498817500384, J. Algebra Appl. 16 (2017), 1750038, 22 pp., DOI: 10.1142/S0219498817500384. Zbl1358.16038MR3608425DOI10.1142/S0219498817500384
- Korbelář M., 10.1007/s00233-016-9827-4, Semigroup Forum, to appear; DOI: 10.1007/s00233-016-9827-4. MR3715842DOI10.1007/s00233-016-9827-4
- Leichtnam E., 10.1007/s00208-017-1527-1, to appear in Math. Ann., DOI: 10.1007/s00208-017-1527-1. MR3694657DOI10.1007/s00208-017-1527-1
- Litvinov G.L., The Maslov dequantization, idempotent and tropical mathematics: a brief introduction, arXiv:math/0507014. Zbl1102.46049MR2148995
- Monico C.J., Semirings and semigroup actions in public-key cryptography, PhD Thesis, University of Notre Dame, USA, 2002. MR2703068
- Mundici D., 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63. MR0819173DOI10.1016/0022-1236(86)90015-7
- Weinert H.J., 10.1007/BF02020799, Acta Math. Acad. Sci. Hungar. 13 (1962), 365–378. Zbl0125.01002MR0146108DOI10.1007/BF02020799
- Weinert H.J., Wiegandt R., 10.1007/BF01879738, Period. Math. Hungar. 32 (1996), 147–162. Zbl0896.12001MR1407915DOI10.1007/BF01879738
- Zumbrägel J., Public-key cryptography based on simple semirings, PhD Thesis, Universität Zürich, Switzerland, 2008.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.