Displaying similar documents to “Semifields and a theorem of Abhyankar”

Non-Wieferich primes in number fields and a b c -conjecture

Srinivas Kotyada, Subramani Muthukrishnan (2018)

Czechoslovak Mathematical Journal

Similarity:

Let K / be an algebraic number field of class number one and let 𝒪 K be its ring of integers. We show that there are infinitely many non-Wieferich primes with respect to certain units in 𝒪 K under the assumption of the a b c -conjecture for number fields.

Results related to Huppert’s ρ - σ conjecture

Xia Xu, Yong Yang (2023)

Czechoslovak Mathematical Journal

Similarity:

We improve a few results related to Huppert’s ρ - σ conjecture. We also generalize a result about the covering number of character degrees to arbitrary finite groups.

On the generalized vanishing conjecture

Zhenzhen Feng, Xiaosong Sun (2019)

Czechoslovak Mathematical Journal

Similarity:

We show that the GVC (generalized vanishing conjecture) holds for the differential operator Λ = ( x - Φ ( y ) ) y and all polynomials P ( x , y ) , where Φ ( t ) is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.

On a number theoretic conjecture on positive integral points in a 5-dimensional tetrahedron and a sharp estimate of the Dickman–De Bruijn function

Ke-Pao Lin, Xue Luo, Stephen S.-T. Yau, Huaiqing Zuo (2014)

Journal of the European Mathematical Society

Similarity:

It is well known that getting the estimate of integral points in right-angled simplices is equivalent to getting the estimate of Dickman-De Bruijn function ψ ( x , y ) which is the number of positive integers x and free of prime factors > y . Motivating from the Yau Geometry Conjecture, the third author formulated the Number Theoretic Conjecture which gives a sharp polynomial upper estimate that counts the number of positive integral points in n-dimensional ( n 3 ) real right-angled simplices. In this...

The generalized Hodge and Bloch conjectures are equivalent for general complete intersections

Claire Voisin (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We prove that Bloch’s conjecture is true for surfaces with p g = 0 obtained as 0 -sets X σ of a section σ of a very ample vector bundle on a variety X with “trivial” Chow groups. We get a similar result in presence of a finite group action, showing that if a projector of the group acts as 0 on holomorphic 2 -forms of  X σ , then it acts as 0 on  0 -cycles of degree 0 of  X σ . In higher dimension, we also prove a similar but conditional result showing that the generalized Hodge conjecture for general X σ ...

On the Gauss-Lucas'lemma in positive characteristic

Umberto Bartocci, Maria Cristina Vipera (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

If f ( x ) is a polynomial with coefficients in the field of complex numbers, of positive degree n , then f ( x ) has at least one root a with the following property: if μ k n , where μ is the multiplicity of α , then f ( k ) ( α ) 0 (such a root is said to be a "free" root of f ( x ) ). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree n ) with coefficients in a field of positive characteristic p > n (Sudbery's Conjecture). In this paper it...

On a conjecture of Dekking : The sum of digits of even numbers

Iurie Boreico, Daniel El-Baz, Thomas Stoll (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let q 2 and denote by s q the sum-of-digits function in base q . For j = 0 , 1 , , q - 1 consider # { 0 n < N : s q ( 2 n ) j ( mod q ) } . In 1983, F. M. Dekking conjectured that this quantity is greater than N / q and, respectively, less than N / q for infinitely many N , thereby claiming an absence of a drift (or Newman) phenomenon. In this paper we prove his conjecture.

Equations in the Hadamard ring of rational functions

Andrea Ferretti, Umberto Zannier (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Let K be a number field. It is well known that the set of recurrencesequences with entries in K is closed under component-wise operations, and so it can be equipped with a ring structure. We try to understand the structure of this ring, in particular to understand which algebraic equations have a solution in the ring. For the case of cyclic equations a conjecture due to Pisot states the following: assume { a n } is a recurrence sequence and suppose that all the a n have a d th root in the field...

Invariance of the parity conjecture for p -Selmer groups of elliptic curves in a D 2 p n -extension

Thomas de La Rochefoucauld (2011)

Bulletin de la Société Mathématique de France

Similarity:

We show a p -parity result in a D 2 p n -extension of number fields L / K ( p 5 ) for the twist 1 η τ : W ( E / K , 1 η τ ) = ( - 1 ) 1 η τ , X p ( E / L ) , where E is an elliptic curve over K , η and τ are respectively the quadratic character and an irreductible representation of degree 2 of Gal ( L / K ) = D 2 p n , and X p ( E / L ) is the p -Selmer group. The main novelty is that we use a congruence result between ε 0 -factors (due to Deligne) for the determination of local root numbers in bad cases (places of additive reduction above 2 and 3). We also give applications to the p -parity conjecture...

On the Gauss-Lucas'lemma in positive characteristic

Umberto Bartocci, Maria Cristina Vipera (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

If f ( x ) is a polynomial with coefficients in the field of complex numbers, of positive degree n , then f ( x ) has at least one root a with the following property: if μ k n , where μ is the multiplicity of α , then f ( k ) ( α ) 0 (such a root is said to be a "free" root of f ( x ) ). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree n ) with coefficients in a field of positive characteristic p > n (Sudbery's Conjecture). In this paper it...

Characterization of the alternating groups by their order and one conjugacy class length

Alireza Khalili Asboei, Reza Mohammadyari (2016)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group, and let N ( G ) be the set of conjugacy class sizes of G . By Thompson’s conjecture, if L is a finite non-abelian simple group, G is a finite group with a trivial center, and N ( G ) = N ( L ) , then L and G are isomorphic. Recently, Chen et al. contributed interestingly to Thompson’s conjecture under a weak condition. They only used the group order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups (see Li’s PhD dissertation)....

On a problem of Sidon for polynomials over finite fields

Wentang Kuo, Shuntaro Yamagishi (2016)

Acta Arithmetica

Similarity:

Let ω be a sequence of positive integers. Given a positive integer n, we define rₙ(ω) = |(a,b) ∈ ℕ × ℕ : a,b ∈ ω, a+b = n, 0 < a < b|. S. Sidon conjectured that there exists a sequence ω such that rₙ(ω) > 0 for all n sufficiently large and, for all ϵ > 0, l i m n r ( ω ) / n ϵ = 0 . P. Erdős proved this conjecture by showing the existence of a sequence ω of positive integers such that log n ≪ rₙ(ω) ≪ log n. In this paper, we prove an analogue of this conjecture in q [ T ] , where q is a finite field of...

Thompson’s conjecture for the alternating group of degree 2 p and 2 p + 1

Azam Babai, Ali Mahmoudifar (2017)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G denote by N ( G ) the set of conjugacy class sizes of G . In 1980s, J. G. Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N ( G ) = N ( L ) , then G L . We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z ( G ) = 1 and N ( G ) = N ( A i ) is necessarily isomorphic to A i , where i { 2 p , 2 p + 1 } .

An a b c d theorem over function fields and applications

Pietro Corvaja, Umberto Zannier (2011)

Bulletin de la Société Mathématique de France

Similarity:

We provide a lower bound for the number of distinct zeros of a sum 1 + u + v for two rational functions u , v , in term of the degree of u , v , which is sharp whenever u , v have few distinct zeros and poles compared to their degree. This sharpens the “ a b c d -theorem” of Brownawell-Masser and Voloch in some cases which are sufficient to obtain new finiteness results on diophantine equations over function fields. For instance, we show that the Fermat-type surface x a + y a + z c = 1 contains only finitely many rational or elliptic...

On some noetherian rings of C germs on a real closed field

Abdelhafed Elkhadiri (2011)

Annales Polonici Mathematici

Similarity:

Let R be a real closed field, and denote by R , n the ring of germs, at the origin of Rⁿ, of C functions in a neighborhood of 0 ∈ Rⁿ. For each n ∈ ℕ, we construct a quasianalytic subring R , n R , n with some natural properties. We prove that, for each n ∈ ℕ, R , n is a noetherian ring and if R = ℝ (the field of real numbers), then , n = , where ₙ is the ring of germs, at the origin of ℝⁿ, of real analytic functions. Finally, we prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring R , n . ...

Recent progress on the Jacobian Conjecture

Michiel de Bondt, Arno van den Essen (2005)

Annales Polonici Mathematici

Similarity:

We describe some recent developments concerning the Jacobian Conjecture (JC). First we describe Drużkowski’s result in [6] which asserts that it suffices to study the JC for Drużkowski mappings of the form x + ( A x ) * 3 with A² = 0. Then we describe the authors’ result of [2] which asserts that it suffices to study the JC for so-called gradient mappings, i.e. mappings of the form x - ∇f, with f k [ n ] homogeneous of degree 4. Using this result we explain Zhao’s reformulation of the JC which asserts the...

A basis of ℤₘ, II

Min Tang, Yong-Gao Chen (2007)

Colloquium Mathematicae

Similarity:

Given a set A ⊂ ℕ let σ A ( n ) denote the number of ordered pairs (a,a’) ∈ A × A such that a + a’ = n. Erdős and Turán conjectured that for any asymptotic basis A of ℕ, σ A ( n ) is unbounded. We show that the analogue of the Erdős-Turán conjecture does not hold in the abelian group (ℤₘ,+), namely, for any natural number m, there exists a set A ⊆ ℤₘ such that A + A = ℤₘ and σ A ( n ̅ ) 5120 for all n̅ ∈ ℤₘ.

Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices

Claude Tardif (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that for any c 5 , there exists an infinite family ( G n ) n of graphs such that χ ( G n ) > c for all n and χ ( G m × G n ) c for all m n . These counterexamples to Hedetniemi’s conjecture show that the Boolean lattice of exponential graphs with K c as a base is infinite for c 5 .

Spectra of elements in the group ring of SU(2)

Alex Gamburd, Dmitry Jakobson, Peter Sarnak (1999)

Journal of the European Mathematical Society

Similarity:

We present a new method for establishing the ‘‘gap” property for finitely generated subgroups of SU ( 2 ) , providing an elementary solution of Ruziewicz problem on S 2 as well as giving many new examples of finitely generated subgroups of SU ( 2 ) with an explicit gap. The distribution of the eigenvalues of the elements of the group ring 𝐑 [ SU ( 2 ) ] in the N -th irreducible representation of SU ( 2 ) is also studied. Numerical experiments indicate that for a generic (in measure) element of 𝐑 [ SU ( 2 ) ] , the “unfolded” consecutive...