Invertible ideals and Gaussian semirings

Shaban Ghalandarzadeh; Peyman Nasehpour; Rafieh Razavi

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 3, page 179-192
  • ISSN: 0044-8753

Abstract

top
In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as ( I + J ) ( I J ) = I J for all ideals I , J of S . In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings.

How to cite

top

Ghalandarzadeh, Shaban, Nasehpour, Peyman, and Razavi, Rafieh. "Invertible ideals and Gaussian semirings." Archivum Mathematicum 053.3 (2017): 179-192. <http://eudml.org/doc/294113>.

@article{Ghalandarzadeh2017,
abstract = {In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as $(I + J)(I \cap J) = IJ$ for all ideals $I$, $J$ of $S$. In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings.},
author = {Ghalandarzadeh, Shaban, Nasehpour, Peyman, Razavi, Rafieh},
journal = {Archivum Mathematicum},
keywords = {semiring; semiring polynomials; Gaussian semiring; cancellation ideals; invertible ideals},
language = {eng},
number = {3},
pages = {179-192},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Invertible ideals and Gaussian semirings},
url = {http://eudml.org/doc/294113},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Ghalandarzadeh, Shaban
AU - Nasehpour, Peyman
AU - Razavi, Rafieh
TI - Invertible ideals and Gaussian semirings
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 3
SP - 179
EP - 192
AB - In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as $(I + J)(I \cap J) = IJ$ for all ideals $I$, $J$ of $S$. In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings.
LA - eng
KW - semiring; semiring polynomials; Gaussian semiring; cancellation ideals; invertible ideals
UR - http://eudml.org/doc/294113
ER -

References

top
  1. Arnold, J.T., Gilmer, R., 10.1090/S0002-9939-1970-0252360-3, Proc. Amer. Math. Soc. 40 (1) (1970), 556–562. (1970) MR0252360DOI10.1090/S0002-9939-1970-0252360-3
  2. Bazzoni, S., Glaz, S., 10.1016/j.jalgebra.2007.01.004, J. Algebra 310 (1) (2007), 180–193. (2007) Zbl1118.13020MR2307788DOI10.1016/j.jalgebra.2007.01.004
  3. Bourne, S., 10.1073/pnas.37.3.163, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 163–170. (1951) Zbl0042.03201MR0041827DOI10.1073/pnas.37.3.163
  4. Dale, L., Pitts, J.D., Euclidean and Gaussian semirings, Kyungpook Math. J. 18 (1978), 17–22. (1978) Zbl0399.16018MR0491842
  5. Dedekind, R., Supplement XI to P.G. Lejeune Dirichlet: Vorlesung über Zahlentheorie 4 Aufl., ch. Über die Theorie der ganzen algebraiscen Zahlen, Druck und Verlag, Braunschweig, 1894. (1894) MR0237283
  6. Eilenberg, S., Automata, Languages, and Machines, vol. A, Academic Press, New York, 1974. (1974) Zbl0317.94045MR0530382
  7. El Bashir, R., Hurt, J., Jančařík, A., Kepka, T., 10.1006/jabr.2000.8483, J. Algebra 236 (2001), 277–306. (2001) Zbl0976.16034MR1808355DOI10.1006/jabr.2000.8483
  8. Gilmer, R., 10.7146/math.scand.a-10833, Math. Scand. 20 (1967), 240–244. (1967) MR0236159DOI10.7146/math.scand.a-10833
  9. Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. (1972) Zbl0248.13001MR0427289
  10. Glazek, K., A guide to the literature on semirings and their applications in mathematics and information sciences, Kluwer Academic Publishers, Dordrecht, 2002. (2002) Zbl1072.16040MR2007485
  11. Golan, J.S., Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, 1999. (1999) Zbl0947.16034MR1746739
  12. Golan, J.S., Power Algebras over Semirings: with Applications in Mathematics and Computer Science, vol. 488, Springer, 1999. (1999) Zbl0947.16035MR1730722
  13. Hebisch, U., Weinert, H.J., On Euclidean semirings, Kyungpook Math. J. 27 (1987), 61–88. (1987) Zbl0645.16025MR0922411
  14. Hebisch, U., Weinert, H.J., Semirings - Algebraic Theory and Applications in Computer Science, World Scientific, Singapore, 1998. (1998) Zbl0934.16046MR1704233
  15. Kim, C.B., A note on the localization in semirings, J. Sci. Inst. Kookmin Univ. 3 (1985), 13–19. (1985) 
  16. Kurosh, A.G., Lectures in General Algebra, Pergamon Press, Oxford, 1965, translated by A. Swinfen. (1965) Zbl0123.00101MR0179235
  17. LaGrassa, S., Semirings: Ideals and Polynomials, Ph.D. thesis, University of Iowa, 1995. (1995) MR2692760
  18. Larsen, M.D., McCarthy, P.J., Multiplicative Theory of Ideals, Academic Press, New York, 1971. (1971) Zbl0237.13002MR0414528
  19. Naoum, A.G., Mijbass, A.S., Weak cancellation modules, Kyungpook Math. J. 37 (1997), 73–82. (1997) Zbl0882.13002MR1454770
  20. Nasehpour, P., 10.1142/S0219498816500882, J. Algebra Appl. 15 (5) (2016), 32, 1650088. (2016) MR3479447DOI10.1142/S0219498816500882
  21. Nasehpour, P., Valuation semirings, J. Algebra Appl. 16 (11) (2018), 23, 1850073, arXiv:1509.03354. (2018) 
  22. Nasehpour, P., Yassemi, S., M -cancellation ideals, Kyungpook Math. J. 40 (2000), 259–263. (2000) Zbl1020.13002MR1803117
  23. Noronha Galvão, M.L., Ideals in the semiring , Portugal. Math. 37 (1978), 231–235. (1978) MR0620304
  24. Prüfer, H., Untersuchungen über Teilbarkeitseigenschaften in Körpern, J. Reine Angew. Math. 168 (1932), 1–36. (1932) Zbl0004.34001MR1581355
  25. Smith, F., 10.1007/BF01187738, Arch. Math. (Basel) 50 (1988), 223–235. (1988) Zbl0615.13003MR0933916DOI10.1007/BF01187738
  26. Vandiver, H.S., 10.1090/S0002-9904-1934-06003-8, Bull. Amer. Math. Soc. 40 (1934), 914–920. (1934) MR1562999DOI10.1090/S0002-9904-1934-06003-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.