Invertible ideals and Gaussian semirings
Shaban Ghalandarzadeh; Peyman Nasehpour; Rafieh Razavi
Archivum Mathematicum (2017)
- Volume: 053, Issue: 3, page 179-192
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topGhalandarzadeh, Shaban, Nasehpour, Peyman, and Razavi, Rafieh. "Invertible ideals and Gaussian semirings." Archivum Mathematicum 053.3 (2017): 179-192. <http://eudml.org/doc/294113>.
@article{Ghalandarzadeh2017,
abstract = {In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as $(I + J)(I \cap J) = IJ$ for all ideals $I$, $J$ of $S$. In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings.},
author = {Ghalandarzadeh, Shaban, Nasehpour, Peyman, Razavi, Rafieh},
journal = {Archivum Mathematicum},
keywords = {semiring; semiring polynomials; Gaussian semiring; cancellation ideals; invertible ideals},
language = {eng},
number = {3},
pages = {179-192},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Invertible ideals and Gaussian semirings},
url = {http://eudml.org/doc/294113},
volume = {053},
year = {2017},
}
TY - JOUR
AU - Ghalandarzadeh, Shaban
AU - Nasehpour, Peyman
AU - Razavi, Rafieh
TI - Invertible ideals and Gaussian semirings
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 3
SP - 179
EP - 192
AB - In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as $(I + J)(I \cap J) = IJ$ for all ideals $I$, $J$ of $S$. In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings.
LA - eng
KW - semiring; semiring polynomials; Gaussian semiring; cancellation ideals; invertible ideals
UR - http://eudml.org/doc/294113
ER -
References
top- Arnold, J.T., Gilmer, R., 10.1090/S0002-9939-1970-0252360-3, Proc. Amer. Math. Soc. 40 (1) (1970), 556–562. (1970) MR0252360DOI10.1090/S0002-9939-1970-0252360-3
- Bazzoni, S., Glaz, S., 10.1016/j.jalgebra.2007.01.004, J. Algebra 310 (1) (2007), 180–193. (2007) Zbl1118.13020MR2307788DOI10.1016/j.jalgebra.2007.01.004
- Bourne, S., 10.1073/pnas.37.3.163, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 163–170. (1951) Zbl0042.03201MR0041827DOI10.1073/pnas.37.3.163
- Dale, L., Pitts, J.D., Euclidean and Gaussian semirings, Kyungpook Math. J. 18 (1978), 17–22. (1978) Zbl0399.16018MR0491842
- Dedekind, R., Supplement XI to P.G. Lejeune Dirichlet: Vorlesung über Zahlentheorie 4 Aufl., ch. Über die Theorie der ganzen algebraiscen Zahlen, Druck und Verlag, Braunschweig, 1894. (1894) MR0237283
- Eilenberg, S., Automata, Languages, and Machines, vol. A, Academic Press, New York, 1974. (1974) Zbl0317.94045MR0530382
- El Bashir, R., Hurt, J., Jančařík, A., Kepka, T., 10.1006/jabr.2000.8483, J. Algebra 236 (2001), 277–306. (2001) Zbl0976.16034MR1808355DOI10.1006/jabr.2000.8483
- Gilmer, R., 10.7146/math.scand.a-10833, Math. Scand. 20 (1967), 240–244. (1967) MR0236159DOI10.7146/math.scand.a-10833
- Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. (1972) Zbl0248.13001MR0427289
- Glazek, K., A guide to the literature on semirings and their applications in mathematics and information sciences, Kluwer Academic Publishers, Dordrecht, 2002. (2002) Zbl1072.16040MR2007485
- Golan, J.S., Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, 1999. (1999) Zbl0947.16034MR1746739
- Golan, J.S., Power Algebras over Semirings: with Applications in Mathematics and Computer Science, vol. 488, Springer, 1999. (1999) Zbl0947.16035MR1730722
- Hebisch, U., Weinert, H.J., On Euclidean semirings, Kyungpook Math. J. 27 (1987), 61–88. (1987) Zbl0645.16025MR0922411
- Hebisch, U., Weinert, H.J., Semirings - Algebraic Theory and Applications in Computer Science, World Scientific, Singapore, 1998. (1998) Zbl0934.16046MR1704233
- Kim, C.B., A note on the localization in semirings, J. Sci. Inst. Kookmin Univ. 3 (1985), 13–19. (1985)
- Kurosh, A.G., Lectures in General Algebra, Pergamon Press, Oxford, 1965, translated by A. Swinfen. (1965) Zbl0123.00101MR0179235
- LaGrassa, S., Semirings: Ideals and Polynomials, Ph.D. thesis, University of Iowa, 1995. (1995) MR2692760
- Larsen, M.D., McCarthy, P.J., Multiplicative Theory of Ideals, Academic Press, New York, 1971. (1971) Zbl0237.13002MR0414528
- Naoum, A.G., Mijbass, A.S., Weak cancellation modules, Kyungpook Math. J. 37 (1997), 73–82. (1997) Zbl0882.13002MR1454770
- Nasehpour, P., 10.1142/S0219498816500882, J. Algebra Appl. 15 (5) (2016), 32, 1650088. (2016) MR3479447DOI10.1142/S0219498816500882
- Nasehpour, P., Valuation semirings, J. Algebra Appl. 16 (11) (2018), 23, 1850073, arXiv:1509.03354. (2018)
- Nasehpour, P., Yassemi, S., -cancellation ideals, Kyungpook Math. J. 40 (2000), 259–263. (2000) Zbl1020.13002MR1803117
- Noronha Galvão, M.L., Ideals in the semiring , Portugal. Math. 37 (1978), 231–235. (1978) MR0620304
- Prüfer, H., Untersuchungen über Teilbarkeitseigenschaften in Körpern, J. Reine Angew. Math. 168 (1932), 1–36. (1932) Zbl0004.34001MR1581355
- Smith, F., 10.1007/BF01187738, Arch. Math. (Basel) 50 (1988), 223–235. (1988) Zbl0615.13003MR0933916DOI10.1007/BF01187738
- Vandiver, H.S., 10.1090/S0002-9904-1934-06003-8, Bull. Amer. Math. Soc. 40 (1934), 914–920. (1934) MR1562999DOI10.1090/S0002-9904-1934-06003-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.