Loading [MathJax]/extensions/MathZoom.js
Several characterizations of 0-distributive posets are obtained by using the prime ideals as well as the semiprime ideals. It is also proved that if every proper -filter of a poset is contained in a proper semiprime filter, then it is -distributive. Further, the concept of a semiatom in 0-distributive posets is introduced and characterized in terms of dual atoms and also in terms of maximal annihilator. Moreover, semiatomic 0-distributive posets are defined and characterized. It is shown that...
Almost Distributive Lattices (ADL) are structures defined by Swamy and Rao [14] as a common abstraction of some generalizations of the Boolean algebra. In our paper, we deal with a certain further generalization of ADLs, namely the Generalized Almost Distributive Lattices (GADL). Our main aim was to give the formal counterpart of this structure and we succeeded formalizing all items from the Section 3 of Rao et al.’s paper [13]. Essentially among GADLs we can find structures which are neither V-commutative...
In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as for all ideals , of . In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family...
This paper is an erratum of H. Mühle: Distributive lattices have the intersection property, Math. Bohem. (2021). Meet-distributive lattices form an intriguing class of lattices, because they are precisely the lattices obtainable from a closure operator with the so-called anti-exchange property. Moreover, meet-distributive lattices are join semidistributive. Therefore, they admit two natural secondary structures: the core label order is an alternative order on the lattice elements and the canonical...
We prove that there is a one to one correspondence between monadic finite quasi-modal operators on a distributive nearlattice and quantifiers on the distributive lattice of its finitely generated filters, extending the results given in ``Calomino I., Celani S., González L. J.: Quasi-modal operators on distributive nearlattices, Rev. Unión Mat. Argent. 61 (2020), 339--352".
In this paper we shall study a notion of relative annihilator-preserving congruence relation and relative annihilator-preserving homomorphism in the class of bounded distributive semilattices. We shall give a topological characterization of this class of semilattice homomorphisms. We shall prove that the semilattice congruences that are associated with filters are exactly the relative annihilator-preserving congruence relations.
The notion of an Almost Distributive Lattice (abbreviated as ADL) was introduced by U. M. Swamy and G. C. Rao [6] as a common abstraction of several lattice theoretic and ring theoretic generalization of Boolean algebras and Boolean rings. In this paper, we introduce the concept of weak pseudo-complementation on ADL’s and discuss several properties of this.
In a 0-distributive lattice sufficient conditions for an -ideal to be an annihilator ideal and prime ideal to be an -ideal are given. Also it is proved that the images and the inverse images of -ideals are -ideals under annihilator preserving homomorphisms.
Currently displaying 1 –
8 of
8