A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 795-808
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYuan, Hongfen. "A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis." Czechoslovak Mathematical Journal 67.3 (2017): 795-808. <http://eudml.org/doc/294121>.
@article{Yuan2017,
abstract = {Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.},
author = {Yuan, Hongfen},
journal = {Czechoslovak Mathematical Journal},
keywords = {super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem},
language = {eng},
number = {3},
pages = {795-808},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis},
url = {http://eudml.org/doc/294121},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Yuan, Hongfen
TI - A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 795
EP - 808
AB - Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.
LA - eng
KW - super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem
UR - http://eudml.org/doc/294121
ER -
References
top- Bernardes, G., Cerejeiras, P., Kähler, U., 10.1007/s00006-009-0151-x, Adv. Appl. Clifford Algebr. 19 (2009), 163-171. (2009) Zbl1172.30020MR2524663DOI10.1007/s00006-009-0151-x
- Cerejeiras, P., Kähler, U., Ren, G., 10.1080/17476930500482499, Complex Var. Elliptic Equ. 51 (2006), 487-495. (2006) Zbl1115.30053MR2230262DOI10.1080/17476930500482499
- Coulembier, K., Bie, H. De, Sommen, F., 10.1088/1751-8113/42/39/395206, J. Phys. A, Math. Theor. 42 (2009), Article ID 395206, 23 pages. (2009) Zbl1187.58011MR2539324DOI10.1088/1751-8113/42/39/395206
- Bie, H. De, Schepper, N. De, 10.36045/bbms/1307452070, Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 193-214. (2011) Zbl1227.30038MR2847756DOI10.36045/bbms/1307452070
- Bie, H. De, Sommen, F., 10.1007/s00006-007-0042-y, Adv. Appl. Clifford Algebr. 17 (2007), 357-382. (2007) Zbl1129.30034MR2350585DOI10.1007/s00006-007-0042-y
- Bie, H. De, Sommen, F., 10.1088/1751-8113/40/26/007, J. Phys. A, Math. Theor. 40 (2007), 7193-7212. (2007) Zbl1143.30315MR2344451DOI10.1088/1751-8113/40/26/007
- Dunkl, C. F., 10.2307/2001022, Trans. Am. Math. Soc. 311 (1989), 167-183. (1989) Zbl0652.33004MR0951883DOI10.2307/2001022
- Dunkl, C. F., Xu, Y., 10.1017/CBO9780511565717, Encyclopedia of Mathematics and Its Applications 81, Cambridge University Press, Cambridge (2001). (2001) Zbl0964.33001MR1827871DOI10.1017/CBO9780511565717
- Fei, M. G., Fundamental solutions of iterated Dunkl-Dirac operators and their applications, Acta Math. Sci. Ser. A, Chin. Ed. 33 (2013), 1052-1061 Chinese. (2013) Zbl1313.33013MR3184906
- Fei, M., Cerejeiras, P., Kähler, U., 10.1088/1751-8113/42/39/395209, J. Phys. A, Math. Theor. 42 (2009), Article ID 395209, 15 pages. (2009) Zbl1230.30033MR2539327DOI10.1088/1751-8113/42/39/395209
- Fei, M., Cerejeiras, P., Kähler, U., 10.1088/1751-8113/43/44/445202, J. Phys. A, Math. Theor. 43 (2010), Article ID 445202, 14 pages. (2010) Zbl1203.30054MR2733821DOI10.1088/1751-8113/43/44/445202
- Heckman, G. J., Dunkl operators, Séminaire Bourbaki, Volume 1996/97. Exposés 820-834. Société Mathématique de France, Astérisque 245 (1997), 223-246. (1997) Zbl0916.33012MR1627113
- Humphreys, J. E., 10.1017/CBO9780511623646, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge (1990). (1990) Zbl0725.20028MR1066460DOI10.1017/CBO9780511623646
- Ren, G., 10.1007/s11425-010-4063-y, Sci. China, Math. 53 (2010), 3153-3162. (2010) Zbl1213.30087MR2746313DOI10.1007/s11425-010-4063-y
- Trimèche, K., 10.1080/10652460212888, Integral Transforms Spec. Funct. 13 (2002), 17-38. (2002) Zbl1030.44004MR1914125DOI10.1080/10652460212888
- Diejen, J. F. Van, (eds.), L. Vinet, 10.1007/978-1-4612-1206-5, Workshop, Centre de Recherches Mathématique, Montréal, 1997. CRM Series in Mathematical Physics, Springer, New York (2000). (2000) Zbl0942.00063MR1843558DOI10.1007/978-1-4612-1206-5
- Yuan, H. F., Karachik, V. V., 10.3846/13926292.2015.1112856, Math. Model. Anal. 20 (2015), 768-781. (2015) MR3427166DOI10.3846/13926292.2015.1112856
- Yuan, H., Qiao, Y., Yang, H., Properties of -monogenic functions and their relative functions in superspace, Adv. Math., Beijing 42 (2013), 233-242 Chinese. (2013) Zbl1299.30132MR3112909
- Yuan, H., Zhang, Z., Qiao, Y., 10.1007/s00006-014-0524-7, Adv. Appl. Clifford Algebr. 25 (2015), 755-769. (2015) Zbl1325.35008MR3384860DOI10.1007/s00006-014-0524-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.