A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis

Hongfen Yuan

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 3, page 795-808
  • ISSN: 0011-4642

Abstract

top
Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.

How to cite

top

Yuan, Hongfen. "A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis." Czechoslovak Mathematical Journal 67.3 (2017): 795-808. <http://eudml.org/doc/294121>.

@article{Yuan2017,
abstract = {Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.},
author = {Yuan, Hongfen},
journal = {Czechoslovak Mathematical Journal},
keywords = {super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem},
language = {eng},
number = {3},
pages = {795-808},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis},
url = {http://eudml.org/doc/294121},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Yuan, Hongfen
TI - A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 795
EP - 808
AB - Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.
LA - eng
KW - super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem
UR - http://eudml.org/doc/294121
ER -

References

top
  1. Bernardes, G., Cerejeiras, P., Kähler, U., 10.1007/s00006-009-0151-x, Adv. Appl. Clifford Algebr. 19 (2009), 163-171. (2009) Zbl1172.30020MR2524663DOI10.1007/s00006-009-0151-x
  2. Cerejeiras, P., Kähler, U., Ren, G., 10.1080/17476930500482499, Complex Var. Elliptic Equ. 51 (2006), 487-495. (2006) Zbl1115.30053MR2230262DOI10.1080/17476930500482499
  3. Coulembier, K., Bie, H. De, Sommen, F., 10.1088/1751-8113/42/39/395206, J. Phys. A, Math. Theor. 42 (2009), Article ID 395206, 23 pages. (2009) Zbl1187.58011MR2539324DOI10.1088/1751-8113/42/39/395206
  4. Bie, H. De, Schepper, N. De, 10.36045/bbms/1307452070, Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 193-214. (2011) Zbl1227.30038MR2847756DOI10.36045/bbms/1307452070
  5. Bie, H. De, Sommen, F., 10.1007/s00006-007-0042-y, Adv. Appl. Clifford Algebr. 17 (2007), 357-382. (2007) Zbl1129.30034MR2350585DOI10.1007/s00006-007-0042-y
  6. Bie, H. De, Sommen, F., 10.1088/1751-8113/40/26/007, J. Phys. A, Math. Theor. 40 (2007), 7193-7212. (2007) Zbl1143.30315MR2344451DOI10.1088/1751-8113/40/26/007
  7. Dunkl, C. F., 10.2307/2001022, Trans. Am. Math. Soc. 311 (1989), 167-183. (1989) Zbl0652.33004MR0951883DOI10.2307/2001022
  8. Dunkl, C. F., Xu, Y., 10.1017/CBO9780511565717, Encyclopedia of Mathematics and Its Applications 81, Cambridge University Press, Cambridge (2001). (2001) Zbl0964.33001MR1827871DOI10.1017/CBO9780511565717
  9. Fei, M. G., Fundamental solutions of iterated Dunkl-Dirac operators and their applications, Acta Math. Sci. Ser. A, Chin. Ed. 33 (2013), 1052-1061 Chinese. (2013) Zbl1313.33013MR3184906
  10. Fei, M., Cerejeiras, P., Kähler, U., 10.1088/1751-8113/42/39/395209, J. Phys. A, Math. Theor. 42 (2009), Article ID 395209, 15 pages. (2009) Zbl1230.30033MR2539327DOI10.1088/1751-8113/42/39/395209
  11. Fei, M., Cerejeiras, P., Kähler, U., 10.1088/1751-8113/43/44/445202, J. Phys. A, Math. Theor. 43 (2010), Article ID 445202, 14 pages. (2010) Zbl1203.30054MR2733821DOI10.1088/1751-8113/43/44/445202
  12. Heckman, G. J., Dunkl operators, Séminaire Bourbaki, Volume 1996/97. Exposés 820-834. Société Mathématique de France, Astérisque 245 (1997), 223-246. (1997) Zbl0916.33012MR1627113
  13. Humphreys, J. E., 10.1017/CBO9780511623646, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge (1990). (1990) Zbl0725.20028MR1066460DOI10.1017/CBO9780511623646
  14. Ren, G., 10.1007/s11425-010-4063-y, Sci. China, Math. 53 (2010), 3153-3162. (2010) Zbl1213.30087MR2746313DOI10.1007/s11425-010-4063-y
  15. Trimèche, K., 10.1080/10652460212888, Integral Transforms Spec. Funct. 13 (2002), 17-38. (2002) Zbl1030.44004MR1914125DOI10.1080/10652460212888
  16. Diejen, J. F. Van, (eds.), L. Vinet, 10.1007/978-1-4612-1206-5, Workshop, Centre de Recherches Mathématique, Montréal, 1997. CRM Series in Mathematical Physics, Springer, New York (2000). (2000) Zbl0942.00063MR1843558DOI10.1007/978-1-4612-1206-5
  17. Yuan, H. F., Karachik, V. V., 10.3846/13926292.2015.1112856, Math. Model. Anal. 20 (2015), 768-781. (2015) MR3427166DOI10.3846/13926292.2015.1112856
  18. Yuan, H., Qiao, Y., Yang, H., Properties of k -monogenic functions and their relative functions in superspace, Adv. Math., Beijing 42 (2013), 233-242 Chinese. (2013) Zbl1299.30132MR3112909
  19. Yuan, H., Zhang, Z., Qiao, Y., 10.1007/s00006-014-0524-7, Adv. Appl. Clifford Algebr. 25 (2015), 755-769. (2015) Zbl1325.35008MR3384860DOI10.1007/s00006-014-0524-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.