The cleanness of (symbolic) powers of Stanley-Reisner ideals
Somayeh Bandari; Ali Soleyman Jahan
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 767-778
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBandari, Somayeh, and Jahan, Ali Soleyman. "The cleanness of (symbolic) powers of Stanley-Reisner ideals." Czechoslovak Mathematical Journal 67.3 (2017): 767-778. <http://eudml.org/doc/294122>.
@article{Bandari2017,
abstract = {Let $\Delta $ be a pure simplicial complex on the vertex set $[n]=\lbrace 1,\ldots ,n\rbrace $ and $I_\Delta $ its Stanley-Reisner ideal in the polynomial ring $S=K[x_1,\ldots ,x_n]$. We show that $\Delta $ is a matroid (complete intersection) if and only if $S/I_\Delta ^\{(m)\}$ ($S/I_\Delta ^m$) is clean for all $m\in \mathbb \{N\}$ and this is equivalent to saying that $S/I_\Delta ^\{(m)\}$ ($S/I_\Delta ^m$, respectively) is Cohen-Macaulay for all $m\in \mathbb \{N\}$. By this result, we show that there exists a monomial ideal $I$ with (pretty) cleanness property while $S/I^m$ or $S/I^\{(m)\}$ is not (pretty) clean for all integer $m\ge 3$. If $\dim (\Delta )=1$, we also prove that $S/I_\Delta ^\{(2)\}$ ($S/I_\Delta ^2$) is clean if and only if $S/I_\Delta ^\{(2)\}$ ($S/I_\Delta ^2$, respectively) is Cohen-Macaulay.},
author = {Bandari, Somayeh, Jahan, Ali Soleyman},
journal = {Czechoslovak Mathematical Journal},
keywords = {clean; Cohen-Macaulay simplicial complex; complete intersection; matroid; symbolic power},
language = {eng},
number = {3},
pages = {767-778},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The cleanness of (symbolic) powers of Stanley-Reisner ideals},
url = {http://eudml.org/doc/294122},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Bandari, Somayeh
AU - Jahan, Ali Soleyman
TI - The cleanness of (symbolic) powers of Stanley-Reisner ideals
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 767
EP - 778
AB - Let $\Delta $ be a pure simplicial complex on the vertex set $[n]=\lbrace 1,\ldots ,n\rbrace $ and $I_\Delta $ its Stanley-Reisner ideal in the polynomial ring $S=K[x_1,\ldots ,x_n]$. We show that $\Delta $ is a matroid (complete intersection) if and only if $S/I_\Delta ^{(m)}$ ($S/I_\Delta ^m$) is clean for all $m\in \mathbb {N}$ and this is equivalent to saying that $S/I_\Delta ^{(m)}$ ($S/I_\Delta ^m$, respectively) is Cohen-Macaulay for all $m\in \mathbb {N}$. By this result, we show that there exists a monomial ideal $I$ with (pretty) cleanness property while $S/I^m$ or $S/I^{(m)}$ is not (pretty) clean for all integer $m\ge 3$. If $\dim (\Delta )=1$, we also prove that $S/I_\Delta ^{(2)}$ ($S/I_\Delta ^2$) is clean if and only if $S/I_\Delta ^{(2)}$ ($S/I_\Delta ^2$, respectively) is Cohen-Macaulay.
LA - eng
KW - clean; Cohen-Macaulay simplicial complex; complete intersection; matroid; symbolic power
UR - http://eudml.org/doc/294122
ER -
References
top- Achilles, R., Vogel, W., 10.1002/mana.19790890123, Math. Nachr. 89 (1979), 285-298 German. (1979) Zbl0416.13015MR0546888DOI10.1002/mana.19790890123
- Bandari, S., Divaani-Aazar, K., Jahan, A. S., 10.2996/kmj/1404393894, Kodai Math. J. 37 (2014), 396-404. (2014) Zbl1297.13024MR3229083DOI10.2996/kmj/1404393894
- Björner, A., Wachs, M. L., 10.1090/S0002-9947-96-01534-6, Trans. Am. Math. Soc. 348 (1996), 1299-1327. (1996) Zbl0857.05102MR1333388DOI10.1090/S0002-9947-96-01534-6
- Bruns, W., Herzog, J., Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). (1993) Zbl0788.13005MR1251956
- Dress, A., A new algebraic criterion for shellability, Beitr. Algebra Geom. 34 (1993), 45-55. (1993) Zbl0780.52012MR1239277
- Faridi, S., 10.1201/9781420028324.ch8, Commutative Algebra: Geometric, Homological, Combinatorial and Computational Aspects A. Corso et al. Proc. Conf., Sevilla, 2003. Lecture Notes in Pure and Applied Mathematics 244, Chapman & Hall/CRC, Boca Raton (2006), 85-114. (2006) Zbl1094.13034MR2184792DOI10.1201/9781420028324.ch8
- Herzog, J., Hibi, T., 10.1007/978-0-85729-106-6, Graduate Texts in Mathematics 260, Springer, London (2011). (2011) Zbl1206.13001MR2724673DOI10.1007/978-0-85729-106-6
- Herzog, J., Popescu, D., 10.1007/s00229-006-0044-4, Manuscr. Math. 121 (2006), 385-410. (2006) Zbl1107.13017MR2267659DOI10.1007/s00229-006-0044-4
- Herzog, J., Popescu, D., Vladoiu, M., 10.1090/conm/331, Commutative Algebra: Interactions with Algebraic Geometry L. L. Avramov et al. Proc. Conf., Grenoble, 2001, Contemp. Math. 331, AMS, Providence (2003), 171-186. (2003) Zbl1050.13008MR2013165DOI10.1090/conm/331
- Hoang, D. T., Minh, N. C., Trung, T. N., 10.1016/j.jcta.2013.02.008, J. Comb. Theory, Ser. A 120 (2013), 1073-1086. (2013) Zbl1277.05174MR3033662DOI10.1016/j.jcta.2013.02.008
- Jahan, A. S., 10.1016/j.jalgebra.2006.11.002, J. Algebra 312 (2007), 1011-1032. (2007) Zbl1142.13022MR2333198DOI10.1016/j.jalgebra.2006.11.002
- Minh, N. C., Trung, N. V., 10.1016/j.jalgebra.2009.09.014, J. Algebra 322 (2009), 4219-4227. (2009) Zbl1206.13028MR2558862DOI10.1016/j.jalgebra.2009.09.014
- Minh, N. C., Trung, N. V., 10.1016/j.aim.2010.08.005, Adv. Math. 226 (2011), 1285-1306 corrigendum ibid. 228 2982-2983 2011. (2011) Zbl1204.13015MR2737785DOI10.1016/j.aim.2010.08.005
- Oxley, J. G., Matroid Theory, Oxford Graduate Texts in Mathematics 3, Oxford Science Publications, Oxford University Press, Oxford (1992). (1992) Zbl0784.05002MR1207587
- Stanley, R. P., 10.1007/b139094, Progress in Mathematics 41, Birkhäuser, Basel (1996). (1996) Zbl0838.13008MR1453579DOI10.1007/b139094
- Terai, N., Trung, N. V., 10.1016/j.aim.2011.10.004, Adv. Math. 229 (2012), 711-730. (2012) Zbl1246.13032MR2855076DOI10.1016/j.aim.2011.10.004
- Varbaro, M., 10.1090/S0002-9939-2010-10685-8, Proc. Am. Math. Soc. 139 (2011), 2357-2366. (2011) Zbl1223.13012MR2784800DOI10.1090/S0002-9939-2010-10685-8
- Villarreal, R. H., Monomial Algebras, Pure and Applied Mathematics 238, Marcel Dekker, New York (2001). (2001) Zbl1002.13010MR1800904
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.