The cleanness of (symbolic) powers of Stanley-Reisner ideals

Somayeh Bandari; Ali Soleyman Jahan

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 3, page 767-778
  • ISSN: 0011-4642

Abstract

top
Let Δ be a pure simplicial complex on the vertex set [ n ] = { 1 , ... , n } and I Δ its Stanley-Reisner ideal in the polynomial ring S = K [ x 1 , ... , x n ] . We show that Δ is a matroid (complete intersection) if and only if S / I Δ ( m ) ( S / I Δ m ) is clean for all m and this is equivalent to saying that S / I Δ ( m ) ( S / I Δ m , respectively) is Cohen-Macaulay for all m . By this result, we show that there exists a monomial ideal I with (pretty) cleanness property while S / I m or S / I ( m ) is not (pretty) clean for all integer m 3 . If dim ( Δ ) = 1 , we also prove that S / I Δ ( 2 ) ( S / I Δ 2 ) is clean if and only if S / I Δ ( 2 ) ( S / I Δ 2 , respectively) is Cohen-Macaulay.

How to cite

top

Bandari, Somayeh, and Jahan, Ali Soleyman. "The cleanness of (symbolic) powers of Stanley-Reisner ideals." Czechoslovak Mathematical Journal 67.3 (2017): 767-778. <http://eudml.org/doc/294122>.

@article{Bandari2017,
abstract = {Let $\Delta $ be a pure simplicial complex on the vertex set $[n]=\lbrace 1,\ldots ,n\rbrace $ and $I_\Delta $ its Stanley-Reisner ideal in the polynomial ring $S=K[x_1,\ldots ,x_n]$. We show that $\Delta $ is a matroid (complete intersection) if and only if $S/I_\Delta ^\{(m)\}$ ($S/I_\Delta ^m$) is clean for all $m\in \mathbb \{N\}$ and this is equivalent to saying that $S/I_\Delta ^\{(m)\}$ ($S/I_\Delta ^m$, respectively) is Cohen-Macaulay for all $m\in \mathbb \{N\}$. By this result, we show that there exists a monomial ideal $I$ with (pretty) cleanness property while $S/I^m$ or $S/I^\{(m)\}$ is not (pretty) clean for all integer $m\ge 3$. If $\dim (\Delta )=1$, we also prove that $S/I_\Delta ^\{(2)\}$ ($S/I_\Delta ^2$) is clean if and only if $S/I_\Delta ^\{(2)\}$ ($S/I_\Delta ^2$, respectively) is Cohen-Macaulay.},
author = {Bandari, Somayeh, Jahan, Ali Soleyman},
journal = {Czechoslovak Mathematical Journal},
keywords = {clean; Cohen-Macaulay simplicial complex; complete intersection; matroid; symbolic power},
language = {eng},
number = {3},
pages = {767-778},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The cleanness of (symbolic) powers of Stanley-Reisner ideals},
url = {http://eudml.org/doc/294122},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Bandari, Somayeh
AU - Jahan, Ali Soleyman
TI - The cleanness of (symbolic) powers of Stanley-Reisner ideals
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 767
EP - 778
AB - Let $\Delta $ be a pure simplicial complex on the vertex set $[n]=\lbrace 1,\ldots ,n\rbrace $ and $I_\Delta $ its Stanley-Reisner ideal in the polynomial ring $S=K[x_1,\ldots ,x_n]$. We show that $\Delta $ is a matroid (complete intersection) if and only if $S/I_\Delta ^{(m)}$ ($S/I_\Delta ^m$) is clean for all $m\in \mathbb {N}$ and this is equivalent to saying that $S/I_\Delta ^{(m)}$ ($S/I_\Delta ^m$, respectively) is Cohen-Macaulay for all $m\in \mathbb {N}$. By this result, we show that there exists a monomial ideal $I$ with (pretty) cleanness property while $S/I^m$ or $S/I^{(m)}$ is not (pretty) clean for all integer $m\ge 3$. If $\dim (\Delta )=1$, we also prove that $S/I_\Delta ^{(2)}$ ($S/I_\Delta ^2$) is clean if and only if $S/I_\Delta ^{(2)}$ ($S/I_\Delta ^2$, respectively) is Cohen-Macaulay.
LA - eng
KW - clean; Cohen-Macaulay simplicial complex; complete intersection; matroid; symbolic power
UR - http://eudml.org/doc/294122
ER -

References

top
  1. Achilles, R., Vogel, W., 10.1002/mana.19790890123, Math. Nachr. 89 (1979), 285-298 German. (1979) Zbl0416.13015MR0546888DOI10.1002/mana.19790890123
  2. Bandari, S., Divaani-Aazar, K., Jahan, A. S., 10.2996/kmj/1404393894, Kodai Math. J. 37 (2014), 396-404. (2014) Zbl1297.13024MR3229083DOI10.2996/kmj/1404393894
  3. Björner, A., Wachs, M. L., 10.1090/S0002-9947-96-01534-6, Trans. Am. Math. Soc. 348 (1996), 1299-1327. (1996) Zbl0857.05102MR1333388DOI10.1090/S0002-9947-96-01534-6
  4. Bruns, W., Herzog, J., Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). (1993) Zbl0788.13005MR1251956
  5. Dress, A., A new algebraic criterion for shellability, Beitr. Algebra Geom. 34 (1993), 45-55. (1993) Zbl0780.52012MR1239277
  6. Faridi, S., 10.1201/9781420028324.ch8, Commutative Algebra: Geometric, Homological, Combinatorial and Computational Aspects A. Corso et al. Proc. Conf., Sevilla, 2003. Lecture Notes in Pure and Applied Mathematics 244, Chapman & Hall/CRC, Boca Raton (2006), 85-114. (2006) Zbl1094.13034MR2184792DOI10.1201/9781420028324.ch8
  7. Herzog, J., Hibi, T., 10.1007/978-0-85729-106-6, Graduate Texts in Mathematics 260, Springer, London (2011). (2011) Zbl1206.13001MR2724673DOI10.1007/978-0-85729-106-6
  8. Herzog, J., Popescu, D., 10.1007/s00229-006-0044-4, Manuscr. Math. 121 (2006), 385-410. (2006) Zbl1107.13017MR2267659DOI10.1007/s00229-006-0044-4
  9. Herzog, J., Popescu, D., Vladoiu, M., 10.1090/conm/331, Commutative Algebra: Interactions with Algebraic Geometry L. L. Avramov et al. Proc. Conf., Grenoble, 2001, Contemp. Math. 331, AMS, Providence (2003), 171-186. (2003) Zbl1050.13008MR2013165DOI10.1090/conm/331
  10. Hoang, D. T., Minh, N. C., Trung, T. N., 10.1016/j.jcta.2013.02.008, J. Comb. Theory, Ser. A 120 (2013), 1073-1086. (2013) Zbl1277.05174MR3033662DOI10.1016/j.jcta.2013.02.008
  11. Jahan, A. S., 10.1016/j.jalgebra.2006.11.002, J. Algebra 312 (2007), 1011-1032. (2007) Zbl1142.13022MR2333198DOI10.1016/j.jalgebra.2006.11.002
  12. Minh, N. C., Trung, N. V., 10.1016/j.jalgebra.2009.09.014, J. Algebra 322 (2009), 4219-4227. (2009) Zbl1206.13028MR2558862DOI10.1016/j.jalgebra.2009.09.014
  13. Minh, N. C., Trung, N. V., 10.1016/j.aim.2010.08.005, Adv. Math. 226 (2011), 1285-1306 corrigendum ibid. 228 2982-2983 2011. (2011) Zbl1204.13015MR2737785DOI10.1016/j.aim.2010.08.005
  14. Oxley, J. G., Matroid Theory, Oxford Graduate Texts in Mathematics 3, Oxford Science Publications, Oxford University Press, Oxford (1992). (1992) Zbl0784.05002MR1207587
  15. Stanley, R. P., 10.1007/b139094, Progress in Mathematics 41, Birkhäuser, Basel (1996). (1996) Zbl0838.13008MR1453579DOI10.1007/b139094
  16. Terai, N., Trung, N. V., 10.1016/j.aim.2011.10.004, Adv. Math. 229 (2012), 711-730. (2012) Zbl1246.13032MR2855076DOI10.1016/j.aim.2011.10.004
  17. Varbaro, M., 10.1090/S0002-9939-2010-10685-8, Proc. Am. Math. Soc. 139 (2011), 2357-2366. (2011) Zbl1223.13012MR2784800DOI10.1090/S0002-9939-2010-10685-8
  18. Villarreal, R. H., Monomial Algebras, Pure and Applied Mathematics 238, Marcel Dekker, New York (2001). (2001) Zbl1002.13010MR1800904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.