Numerical analysis of a Stokes interface problem based on formulation using the characteristic function
Applications of Mathematics (2017)
- Volume: 62, Issue: 5, page 459-476
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSugitani, Yoshiki. "Numerical analysis of a Stokes interface problem based on formulation using the characteristic function." Applications of Mathematics 62.5 (2017): 459-476. <http://eudml.org/doc/294128>.
@article{Sugitani2017,
abstract = {Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates of order $h^\{1/2\}$ in $H^1\times L^2$ norm for the velocity and pressure, and of order $h$ in $L^2$ norm for the velocity are derived. Those theoretical results are also verified by numerical examples.},
author = {Sugitani, Yoshiki},
journal = {Applications of Mathematics},
keywords = {interface problem; Stokes equation; finite element method},
language = {eng},
number = {5},
pages = {459-476},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Numerical analysis of a Stokes interface problem based on formulation using the characteristic function},
url = {http://eudml.org/doc/294128},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Sugitani, Yoshiki
TI - Numerical analysis of a Stokes interface problem based on formulation using the characteristic function
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 5
SP - 459
EP - 476
AB - Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates of order $h^{1/2}$ in $H^1\times L^2$ norm for the velocity and pressure, and of order $h$ in $L^2$ norm for the velocity are derived. Those theoretical results are also verified by numerical examples.
LA - eng
KW - interface problem; Stokes equation; finite element method
UR - http://eudml.org/doc/294128
ER -
References
top- Adams, R. A., Fournier, J. J. F., Sobolev Spaces, Pure and Applied Mathematics 140, Academic Press, New York (2003). (2003) Zbl1098.46001MR2424078
- Boffi, D., Gastaldi, L., Heltai, L., 10.1142/S0218202507002352, Math. Models Methods Appl. Sci. 17 (2007), 1479-1505. (2007) Zbl1186.76661MR2359913DOI10.1142/S0218202507002352
- Boffi, D., Gastaldi, L., Heltai, L., Peskin, C. S., 10.1016/j.cma.2007.09.015, Comput. Methods Appl. Mech. Eng. 197 (2008), 2210-2231. (2008) Zbl1158.74523MR2412821DOI10.1016/j.cma.2007.09.015
- Dauge, M., 10.1137/0520006, SIAM J. Math. Anal. 20 (1989), 74-97. (1989) Zbl0681.35071MR0977489DOI10.1137/0520006
- Floryan, J. M., Rasmussen, H., 10.1115/1.3152416, Appl. Mech. Rev. 42 (1989), 323-341. (1989) MR1028357DOI10.1115/1.3152416
- Fujita, H., Kawahara, H., Kawarada, H., Distribution theoretic approach to fictitious domain method for Neumann problems, East-West J. Numer. Math. 3 (1995), 111-126. (1995) Zbl0833.65120MR1342887
- Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5, Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
- Hecht, F., 10.1515/jnum-2012-0013, J. Numer. Math. 20 (2012), 251-265. (2012) Zbl1266.68090MR3043640DOI10.1515/jnum-2012-0013
- Hou, T. Y., 10.1017/S0962492900002567, Acta Numerica 1995 Cambridge University Press, Cambridge A. Iserles (1995), 335-415. (1995) Zbl0831.65137MR1352474DOI10.1017/S0962492900002567
- Kellogg, R. B., Osborn, J. E., 10.1016/0022-1236(76)90035-5, J. Funct. Anal. 21 (1976), 397-431. (1976) Zbl0317.35037MR0404849DOI10.1016/0022-1236(76)90035-5
- Nečas, J., 10.1007/978-3-642-10455-8, Springer Monographs in Mathematics, Springer, Berlin (2012). (2012) Zbl1246.35005MR3014461DOI10.1007/978-3-642-10455-8
- Ohmori, K., Saito, N., 10.1016/j.cam.2005.11.018, J. Comput. Appl. Math. 198 (2007), 116-128. (2007) Zbl1100.76036MR2250391DOI10.1016/j.cam.2005.11.018
- Peskin, C. S., 10.1016/0021-9991(72)90065-4, J. Comput. Phys. 10 (1972), 252-271. (1972) Zbl0244.92002DOI10.1016/0021-9991(72)90065-4
- Peskin, C. S., 10.1016/0021-9991(77)90100-0, J. Comput. Phys. 25 (1977), 220-252. (1977) Zbl0403.76100MR0490027DOI10.1016/0021-9991(77)90100-0
- Peskin, C. S., 10.1017/S0962492902000077, Acta Numerica 11 (2002), 479-517. (2002) Zbl1123.74309MR2009378DOI10.1017/S0962492902000077
- Quarteroni, A., 10.1007/978-88-470-5522-3, MS&A. Modeling, Simulation and Applications 8, Springer, Milano (2014). (2014) Zbl1285.65054MR3183828DOI10.1007/978-88-470-5522-3
- Saito, N., Sugitani, Y., Convergence of the immersed-boundary finite-element method for the Stokes problem, ArXiv:1611.07172.
- Scardovelli, R., Zaleski, S., 10.1146/annurev.fluid.31.1.567, Annual Review of Fluid Mechanics Annu. Rev. Fluid Mech. 31, Annual Reviews, Palo Alto (1999), 567-603. (1999) MR1670950DOI10.1146/annurev.fluid.31.1.567
- Tabata, M., 10.14492/hokmj/1272848038, Hokkaido Math. J. 36 (2007), 875-890. (2007) Zbl1134.76032MR2378296DOI10.14492/hokmj/1272848038
- Tornberg, A.-K., Engquist, B., 10.1016/j.jcp.2004.04.011, J. Comput. Phys. 200 (2004), 462-488. (2004) Zbl1115.76392MR2095274DOI10.1016/j.jcp.2004.04.011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.