A penalty method for the time-dependent Stokes problem with the slip boundary condition and its finite element approximation

Guanyu Zhou; Takahito Kashiwabara; Issei Oikawa

Applications of Mathematics (2017)

  • Volume: 62, Issue: 4, page 377-403
  • ISSN: 0862-7940

Abstract

top
We consider the finite element method for the time-dependent Stokes problem with the slip boundary condition in a smooth domain. To avoid a variational crime of numerical computation, a penalty method is introduced, which also facilitates the numerical implementation. For the continuous problem, the convergence of the penalty method is investigated. Then we study the fully discretized finite element approximations for the penalty method with the P1/P1-stabilization or P1b/P1 element. For the discretization of the penalty term, we propose reduced and non-reduced integration schemes, and obtain an error estimate for velocity and pressure. The theoretical results are verified by numerical experiments.

How to cite

top

Zhou, Guanyu, Kashiwabara, Takahito, and Oikawa, Issei. "A penalty method for the time-dependent Stokes problem with the slip boundary condition and its finite element approximation." Applications of Mathematics 62.4 (2017): 377-403. <http://eudml.org/doc/294129>.

@article{Zhou2017,
abstract = {We consider the finite element method for the time-dependent Stokes problem with the slip boundary condition in a smooth domain. To avoid a variational crime of numerical computation, a penalty method is introduced, which also facilitates the numerical implementation. For the continuous problem, the convergence of the penalty method is investigated. Then we study the fully discretized finite element approximations for the penalty method with the P1/P1-stabilization or P1b/P1 element. For the discretization of the penalty term, we propose reduced and non-reduced integration schemes, and obtain an error estimate for velocity and pressure. The theoretical results are verified by numerical experiments.},
author = {Zhou, Guanyu, Kashiwabara, Takahito, Oikawa, Issei},
journal = {Applications of Mathematics},
keywords = {penalty method; Stokes problem; finite element method; error estimate},
language = {eng},
number = {4},
pages = {377-403},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A penalty method for the time-dependent Stokes problem with the slip boundary condition and its finite element approximation},
url = {http://eudml.org/doc/294129},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Zhou, Guanyu
AU - Kashiwabara, Takahito
AU - Oikawa, Issei
TI - A penalty method for the time-dependent Stokes problem with the slip boundary condition and its finite element approximation
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 377
EP - 403
AB - We consider the finite element method for the time-dependent Stokes problem with the slip boundary condition in a smooth domain. To avoid a variational crime of numerical computation, a penalty method is introduced, which also facilitates the numerical implementation. For the continuous problem, the convergence of the penalty method is investigated. Then we study the fully discretized finite element approximations for the penalty method with the P1/P1-stabilization or P1b/P1 element. For the discretization of the penalty term, we propose reduced and non-reduced integration schemes, and obtain an error estimate for velocity and pressure. The theoretical results are verified by numerical experiments.
LA - eng
KW - penalty method; Stokes problem; finite element method; error estimate
UR - http://eudml.org/doc/294129
ER -

References

top
  1. Bänsch, E., Deckelnick, K., 10.1051/m2an:1999126, M2AN, Math. Model. Numer. Anal. 33 (1999), 923-938. (1999) Zbl0948.76035MR1726716DOI10.1051/m2an:1999126
  2. Bänsch, E., Höhn, B., 10.1137/S1064827598343991, SIAM J. Sci. Comput. 21 (2000), 2144-2162. (2000) Zbl0970.76056MR1762035DOI10.1137/S1064827598343991
  3. Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0, Texts in Applied Mathematics 15 Springer, New York (2002). (2002) Zbl0804.65101MR1894376DOI10.1007/978-0-387-75934-0
  4. Çağlar, A., 10.1016/S0096-3003(02)00960-8, Appl. Math. Comput. 149 (2004), 119-145. (2004) Zbl1100.76034MR2030987DOI10.1016/S0096-3003(02)00960-8
  5. Dione, I., Tibirna, C., Urquiza, J., 10.1080/10618562.2013.821114, Int. J. Comput. Fluid Dyn. 27 (2013), 283-296. (2013) MR3171814DOI10.1080/10618562.2013.821114
  6. Dione, I., Urquiza, J. M., 10.1007/s00211-014-0646-9, Numer. Math. 129 (2015), 587-610. (2015) Zbl1308.76162MR3311462DOI10.1007/s00211-014-0646-9
  7. Geuzaine, C., Remacle, J.-F., 10.1002/nme.2579, Int. J. Numer. Methods Eng. 79 (2009), 1309-1331. (2009) Zbl1176.74181MR2566786DOI10.1002/nme.2579
  8. Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5 Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
  9. Hecht, F., 10.1515/jnum-2012-0013, J. Numer. Math. 20 (2012), 251-265. (2012) Zbl1266.68090MR3043640DOI10.1515/jnum-2012-0013
  10. Heywood, J. G., Rannacher, R., 10.1137/0719018, SIAM J. Numer. Anal. 19 (1982), 275-311. (1982) Zbl0487.76035MR0650052DOI10.1137/0719018
  11. John, V., 10.1016/S0377-0427(02)00437-5, J. Comput. Appl. Math. 147 (2002), 287-300. (2002) Zbl1021.76028MR1933597DOI10.1016/S0377-0427(02)00437-5
  12. Kashiwabara, T., Oikawa, I., Zhou, G., 10.1007/s00211-016-0790-5, Numer. Math. 134 (2016), 705-740. (2016) Zbl06654608MR3563279DOI10.1007/s00211-016-0790-5
  13. Knobloch, P., Discrete Friedrich's and Korn's inequalities in two and three dimensions, East-West J. Numer. Math. 4 (1996), 35-51. (1996) Zbl0854.65098MR1393064
  14. Knobloch, P., Variational crimes in a finite element discretization of 3D Stokes equations with nonstandard boundary conditions, East-West J. Numer. Math. 7 (1999), 133-158. (1999) Zbl0958.76043MR1699239
  15. Layton, W., 10.1016/S0898-1221(99)00220-5, Comput. Math. Appl. 38 (1999), 129-142. (1999) Zbl0953.76050MR1707832DOI10.1016/S0898-1221(99)00220-5
  16. Logg, A., Mardal, K.-A., Wells, G., Editors, 10.1007/978-3-642-23099-8, Lecture Notes in Computational Science and Engineering 84 Springer, Heidelberg (2012). (2012) Zbl1247.65105MR3075806DOI10.1007/978-3-642-23099-8
  17. Saito, H., Scriven, L. E., 10.1016/0021-9991(81)90232-1, J. Comput. Phys. 42 (1981), 53-76. (1981) Zbl0466.76035DOI10.1016/0021-9991(81)90232-1
  18. Shibata, Y., Shimada, R., 10.2969/jmsj/05920469, J. Math. Soc. Japan 59 (2007), 469-519. (2007) Zbl1127.35043MR2325694DOI10.2969/jmsj/05920469
  19. Stokes, Y., Carey, G., 10.1108/09615531111148455, Int. J. Numer. Meth. Heat and Fluid Flow 21 (2011), 668-702. (2011) DOI10.1108/09615531111148455
  20. Tabata, M., 10.1007/BF03168591, Japan J. Ind. Appl. Math. 18 (2001), 567-585. (2001) Zbl0985.65142MR1842928DOI10.1007/BF03168591
  21. Tabata, M., 10.1016/j.future.2005.04.008, Future Gener. Comput. Syst. 22 521-531 (2006). (2006) DOI10.1016/j.future.2005.04.008
  22. Tabata, M., Suzuki, A., 10.1016/S0045-7825(00)00209-7, Comput. Methods Appl. Mech. Eng. 190 (2000), 387-402. (2000) Zbl0973.76056MR1808485DOI10.1016/S0045-7825(00)00209-7
  23. Tabata, M., Tagami, D., 10.1007/BF03167373, Japan J. Ind. Appl. Math. 17 (2000), 371-389. (2000) Zbl1306.76026MR1794176DOI10.1007/BF03167373
  24. Temam, R., 10.1090/chel/343, AMS Chelsea Publishing, Providence (2001). (2001) Zbl0981.35001MR1846644DOI10.1090/chel/343
  25. Verfürth, R., 10.1051/m2an/1985190304611, RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 461-475. (1985) Zbl0579.76024MR0807327DOI10.1051/m2an/1985190304611
  26. Verfürth, R., 10.1007/BF01398380, Numer. Math. 50 (1987), 697-721. (1987) Zbl0596.76031MR0884296DOI10.1007/BF01398380
  27. Verfürth, R., 10.1007/BF01385799, Numer. Math. 59 (1991), 615-636. (1991) Zbl0739.76034MR1124131DOI10.1007/BF01385799
  28. Zhou, G., Kashiwabara, T., Oikawa, I., 10.1007/s10915-015-0142-0, J. Sci. Comput. 68 (2016), 339-374. (2016) Zbl06607354MR3510584DOI10.1007/s10915-015-0142-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.