Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions

R. Verfürth

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1985)

  • Volume: 19, Issue: 3, page 461-475
  • ISSN: 0764-583X

How to cite

top

Verfürth, R.. "Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.3 (1985): 461-475. <http://eudml.org/doc/193456>.

@article{Verfürth1985,
author = {Verfürth, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {steady Navier-Stokes equations; bounded regions; smooth boundary; non- conforming mixed finite element method; unique solutions; error estimates; Babuska-type paradox},
language = {eng},
number = {3},
pages = {461-475},
publisher = {Dunod},
title = {Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions},
url = {http://eudml.org/doc/193456},
volume = {19},
year = {1985},
}

TY - JOUR
AU - Verfürth, R.
TI - Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 3
SP - 461
EP - 475
LA - eng
KW - steady Navier-Stokes equations; bounded regions; smooth boundary; non- conforming mixed finite element method; unique solutions; error estimates; Babuska-type paradox
UR - http://eudml.org/doc/193456
ER -

References

top
  1. 1. I. BABUSKA, The theory of small changes in the domain of existence in the theory of partial differential equations and its applications. In : Differential Equations and their Applications. Academic Press, New York, 1963. Zbl0156.10301MR170133
  2. 2. J. BEMELMANS, Gleichgewichtsfiguren zäher Flüssigkeiten mit Oberflächenspannung. Analysis 1, 241-282 (1981). Zbl0561.76042MR727877
  3. 3. J. BEMELMANS, Liquid drops in viscous fluid under the influence of gravity and surface tension. Manuscripta Math. 36, 105-123 (1981). Zbl0478.76118MR637857
  4. 4. M. BERCOVIER, O. PIRONNEAU, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33, 211-224 (1979). Zbl0423.65058MR549450
  5. 5. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numér. 8 (R-2), 129-151 (1974). Zbl0338.90047MR365287
  6. 6. Ph. G. CIARLET, The finite element method for elliptic problems. North Holland, New York, 1980. Zbl0511.65078MR608971
  7. 7. V. GIRAULT, P.-A. RAVIART, Finite element approximation of the Navier-Stokes equations. Springer, Berlin, 1979. Zbl0413.65081MR548867
  8. 8. P. LETALLEC, A mixed finite element approximation of the Navier-Stokes equations. Numer. Math. 35, 381-404 (1980). Zbl0503.76033MR593835
  9. 9. V.A. SOLONNIKOV, V. E. SCADlLOV, On a boundary value problem for a siationary system of Navier-Stokes equations. Proc. Steklov. Inst. Math. 125, 186-199 (1973). Zbl0313.35063
  10. 10. R. VERFÜRTH, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO 18, 175-182 (1984). Zbl0557.76037MR743884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.