Probabilistic approach spaces
Mathematica Bohemica (2017)
- Volume: 142, Issue: 3, page 277-298
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topJäger, Gunther. "Probabilistic approach spaces." Mathematica Bohemica 142.3 (2017): 277-298. <http://eudml.org/doc/294141>.
@article{Jäger2017,
abstract = {We study a probabilistic generalization of Lowen's approach spaces. Such a probabilistic approach space is defined in terms of a probabilistic distance which assigns to a point and a subset a distance distribution function. We give a suitable axiom scheme and show that the resulting category is isomorphic to the category of left-continuous probabilistic topological convergence spaces and hence is a topological category. We further show that the category of Lowen's approach spaces is isomorphic to a simultaneously bireflective and bicoreflective subcategory and that the category of probabilistic quasi-metric spaces is isomorphic to a bicoreflective subcategory of the category of probabilistic approach spaces.},
author = {Jäger, Gunther},
journal = {Mathematica Bohemica},
keywords = {approach space; probabilistic approach space; probabilistic convergence space; probabilistic metric space},
language = {eng},
number = {3},
pages = {277-298},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Probabilistic approach spaces},
url = {http://eudml.org/doc/294141},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Jäger, Gunther
TI - Probabilistic approach spaces
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 3
SP - 277
EP - 298
AB - We study a probabilistic generalization of Lowen's approach spaces. Such a probabilistic approach space is defined in terms of a probabilistic distance which assigns to a point and a subset a distance distribution function. We give a suitable axiom scheme and show that the resulting category is isomorphic to the category of left-continuous probabilistic topological convergence spaces and hence is a topological category. We further show that the category of Lowen's approach spaces is isomorphic to a simultaneously bireflective and bicoreflective subcategory and that the category of probabilistic quasi-metric spaces is isomorphic to a bicoreflective subcategory of the category of probabilistic approach spaces.
LA - eng
KW - approach space; probabilistic approach space; probabilistic convergence space; probabilistic metric space
UR - http://eudml.org/doc/294141
ER -
References
top- Abramsky, S., Jung, A., Domain Theory, Handbook of Logic and Computer Science. Vol. 3 (S. Abramsky et al., eds.) Claredon Press, Oxford University Press, New York (1994), 1-168. (1994) MR1365749
- Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories---The Joy of Cats, John Wiley & Sons, New York (1990). (1990) Zbl0695.18001MR1051419
- Brock, P., 10.1155/S0161171298000611, Int. J. Math. Math. Sci. 21 (1998), 439-452. (1998) Zbl0905.54005MR1620306DOI10.1155/S0161171298000611
- Brock, P., Kent, D. C., 10.1023/A:1008633124960, Appl. Categ. Struct. 5 (1997), 99-110. (1997) Zbl0885.54008MR1456517DOI10.1023/A:1008633124960
- Flagg, R. C., 10.1007/s000120050018, Algebra Univers. 37 (1997), 257-276. (1997) Zbl0906.54024MR1452402DOI10.1007/s000120050018
- Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W., Scott, D.S., 10.1017/CBO9780511542725, Encyclopedia of Mathematics and Its Applications 93. Cambridge University Press, Cambridge (2003). (2003) Zbl1088.06001MR1975381DOI10.1017/CBO9780511542725
- Jäger, G., 10.2989/16073606.2014.981734, Quaestiones Math. 38 (2015), 587-599. (2015) MR3403669DOI10.2989/16073606.2014.981734
- Kowalsky, H.-J., 10.1002/mana.19540120504, Math. Nachr. 12 (1954), 301-340. (1954) Zbl0056.41403MR0073147DOI10.1002/mana.19540120504
- Lowen, R., 10.1002/mana.19891410120, Math. Nachr. 141 (1989), 183-226. (1989) Zbl0676.54012MR1014427DOI10.1002/mana.19891410120
- Lowen, R., Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs. Clarendon Press, Oxford (1997). (1997) Zbl0891.54001MR1472024
- Lowen, R., 10.1007/978-1-4471-6485-2, Springer Monographs in Mathematics. Springer, London (2015). (2015) Zbl1311.54002MR3308451DOI10.1007/978-1-4471-6485-2
- Menger, K., 10.1073/pnas.28.12.535, Proc. Natl. Acad. Sci. USA 28 (1942), 535-537. (1942) Zbl0063.03886MR0007576DOI10.1073/pnas.28.12.535
- Preuss, G., 10.1007/978-94-010-0489-3, Kluwer Academic Publishers, Dordrecht (2002). (2002) Zbl1058.54001MR2033142DOI10.1007/978-94-010-0489-3
- Richardson, G. D., Kent, D. C., 10.1017/S1446788700000483, J. Aust. Math. Soc., Ser. A 61 (1996), 400-420. (1996) Zbl0943.54002MR1420347DOI10.1017/S1446788700000483
- Roldán-López-de-Hierro, A.-F., Sen, M. de la, Martínez-Moreno, J., Hierro, C. Roldán-López-de-, 10.1186/s13663-015-0276-7, Fixed Point Theory Appl. (electronic only) (2015), Article ID 33, 23 pages. (2015) Zbl1310.54004MR3316772DOI10.1186/s13663-015-0276-7
- Saminger-Platz, S., Sempi, C., 10.1007/s00010-008-2936-8, Aequationes Math. 76 (2008), 201-240. (2008) Zbl1162.54013MR2461890DOI10.1007/s00010-008-2936-8
- Saminger-Platz, S., Sempi, C., 10.1007/s00010-010-0038-x, Aequationes Math. 80 (2010), 239-268. (2010) Zbl1213.39031MR2739176DOI10.1007/s00010-010-0038-x
- Schweizer, B., Sklar, A., 10.2140/pjm.1960.10.313, Pac. J. Math. 10 (1960), 313-334. (1960) Zbl0091.29801MR0115153DOI10.2140/pjm.1960.10.313
- Schweizer, B., Sklar, A., nema, North Holland Series in Probability and Applied Mathematics. North Holland, New York (1983). (1983) Zbl0546.60010MR0790314DOInema
- Tardiff, R. M., 10.2140/pjm.1976.65.233, Pac. J. Math. 65 (1976), 233-251. (1976) Zbl0337.54004MR0423315DOI10.2140/pjm.1976.65.233
- Wald, A., 10.1073/pnas.29.6.196, Proc. Natl. Acad. Sci. USA 29 (1943), 196-197. (1943) Zbl0063.08119MR0007950DOI10.1073/pnas.29.6.196
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.