A Measurable Selection Theorem for Compact-Valued Maps.
In this paper, the relationships between metric spaces and -metrizable spaces are established in terms of certain quotient mappings, which is an answer to Alexandroff’s problems.
In this paper, we give the mapping theorems on -spaces and -metrizable spaces by means of some sequence-covering mappings, mssc-mappings and -mappings.
In this note we first give a summary that on property of a remainder of a non-locally compact topological group in a compactification makes the remainder and the topological group all separable and metrizable. If a non-locally compact topological group has a compactification such that the remainder of belongs to , then and are separable and metrizable, where is a class of spaces which satisfies the following conditions: (1) if , then every compact subset of the space is a...
Let be a metric space with a doubling measure, be a boundedly compact metric space and be a Lebesgue precise mapping whose upper gradient belongs to the Lorentz space , . Let be a set of measure zero. Then for -a.e. , where is the -dimensional Hausdorff measure and is the -codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets...
If is a space that can be mapped onto a metric space by a one-to-one mapping, then is said to have a weaker metric topology. In this paper, we give characterizations of sequence-covering compact images and sequentially-quotient compact images of spaces with a weaker metric topology. The main results are that (1) is a sequence-covering compact image of a space with a weaker metric topology if and only if has a sequence of point-finite -covers such that for each . (2) is a sequentially-quotient...