Estimation for heavy tailed moving average process

Hakim Ouadjed; Tawfiq Fawzi Mami

Kybernetika (2018)

  • Volume: 54, Issue: 2, page 351-362
  • ISSN: 0023-5954

Abstract

top
In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations using the relationship between the extremal index and the moving average parameter. We analyze their performance through a simulation study.

How to cite

top

Ouadjed, Hakim, and Mami, Tawfiq Fawzi. "Estimation for heavy tailed moving average process." Kybernetika 54.2 (2018): 351-362. <http://eudml.org/doc/294147>.

@article{Ouadjed2018,
abstract = {In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations using the relationship between the extremal index and the moving average parameter. We analyze their performance through a simulation study.},
author = {Ouadjed, Hakim, Mami, Tawfiq Fawzi},
journal = {Kybernetika},
keywords = {extreme value theory; mixing processes; tail index estimation},
language = {eng},
number = {2},
pages = {351-362},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Estimation for heavy tailed moving average process},
url = {http://eudml.org/doc/294147},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Ouadjed, Hakim
AU - Mami, Tawfiq Fawzi
TI - Estimation for heavy tailed moving average process
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 2
SP - 351
EP - 362
AB - In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations using the relationship between the extremal index and the moving average parameter. We analyze their performance through a simulation study.
LA - eng
KW - extreme value theory; mixing processes; tail index estimation
UR - http://eudml.org/doc/294147
ER -

References

top
  1. Brockwell, P. J., Davis, R. A., 10.1007/978-1-4419-0320-4, Springer-Verlag, New York 1991. MR1093459DOI10.1007/978-1-4419-0320-4
  2. Cheng, S., Peng, L., 10.2307/3318540, Bernoulli 7 (2001), 751-760. MR1867084DOI10.2307/3318540
  3. Drees, H., 10.1214/aoap/1019487617, Ann. Appl. Probab. 10 (2000), 1274-1301. MR1810875DOI10.1214/aoap/1019487617
  4. Drees, H., 10.3150/bj/1066223272, Bernoulli 9 (2003), 617-657. MR1996273DOI10.3150/bj/1066223272
  5. Fabián, Z., Stehlík, M., On Robust and Distribution Sensitive Hill Like Method., Tech. Rep. IFAS Reasearch Paper Series 43 (2009). 
  6. Feigin, P. D., Kratz, M. F., Resnick, S. I., 10.1214/aoap/1035463327, Ann. Appl. Probab. 6 (1996), 1157-1190. MR1422981DOI10.1214/aoap/1035463327
  7. Ferro, C. A. T., Segers, J., 10.1111/1467-9868.00401, J. Roy. Statist. Soc., Ser. B 65 (2003), 545-556. MR1983763DOI10.1111/1467-9868.00401
  8. Fisher, R. A., Tippett, L. H. C., 10.1017/S0305004100015681, Math. Proc. Cambridge Philosophical Soc. 24 (1928), 180-190. DOI10.1017/S0305004100015681
  9. Haan, L. de, Mercadier, C., Zhou, C., 10.1007/s00780-015-0287-6, Finance Stoch. 20 (2016), 321-354. MR3479324DOI10.1007/s00780-015-0287-6
  10. Hall, P., Welsh, A. H., 10.1214/aos/1176346596, Ann. Statist. 13 (1985), 331-341. MR0773171DOI10.1214/aos/1176346596
  11. Hill, B. M., 10.1214/aos/1176343247, Ann. Statist. 3 (1975), 1163-1174. MR0378204DOI10.1214/aos/1176343247
  12. Jordanova, P., Stehlík, M., Fabián, Z., Střelec, L., On estimation and testing for Pareto tails., Pliska Stud. Math. Bulgar. 22 (2013), 89-108. MR3203698
  13. Jordanova, P., Dušek, J., Stehlík, M., 10.1016/j.chemolab.2012.12.006, Chemometrics and Intelligent Laboratory Systems 122 (2013), 40-49. DOI10.1016/j.chemolab.2012.12.006
  14. Jordanova, P., Fabián, Z., Hermann, P., Střelec, L., Rivera, A., Girard, S., Torres, S., Stehlík, M., 10.1007/s10687-016-0256-2, Extremes 19 (2016), 591-626. MR3558347DOI10.1007/s10687-016-0256-2
  15. Koutrouvelis, I. A., 10.1080/01621459.1980.10477573, J. Amer. Statist. Assoc. 75 (1980), 918-928. MR0600977DOI10.1080/01621459.1980.10477573
  16. Leadbetter, M. R., Lindgren, G., Rootzen, H., 10.1007/978-1-4612-5449-2, Springer-Verlag, New York 1983. MR0691492DOI10.1007/978-1-4612-5449-2
  17. Mami, T. F., Ouadjed, H., Semi parametric estimation for autoregressive process with infinite variance., ProbStat Forum 9 (2016), 73-79. 
  18. McCulloch, J. H., 10.1080/03610918608812563, Commun. Statist. - Simulation and Computation 15 (1986), 1109-1136. Zbl0612.62028MR0876783DOI10.1080/03610918608812563
  19. Meerschaert, M. M., Scheffler, H. P, 10.1016/s0378-3758(98)00093-7, J. Statist. Planning Inference 71 (1998), 19-34. MR1651847DOI10.1016/s0378-3758(98)00093-7
  20. Neves, C., Alves, M. I. Fraga, 10.1016/j.csda.2003.11.011, Comput. Statist. Data Anal. 47 (2004), 689-704. MR2086488DOI10.1016/j.csda.2003.11.011
  21. Nolan, J. P., 10.1007/978-1-4612-0197-7_17, In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhäuser, Boston 2001. Zbl0971.62008MR1833689DOI10.1007/978-1-4612-0197-7_17
  22. Samorodnitsky, G., Taqqu, M., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance., Chapman and Hall, New York 1994. MR1280932
  23. Smith, R. L., Weissman, I., Estimating the extremal index., J. Roy. Statist. Soc., Ser. B 56 (1994), 515-528. MR1278224
  24. Süveges, M., 10.1007/s10687-007-0034-2, Extremes 10 (2007), 41-55. MR2407640DOI10.1007/s10687-007-0034-2
  25. Weissman, I., Novak, S. Y., 10.1016/s0378-3758(97)00095-5, J. Statist. Planning Inference 66 (1998), 281-288. MR1614480DOI10.1016/s0378-3758(97)00095-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.