Estimation for heavy tailed moving average process
Hakim Ouadjed; Tawfiq Fawzi Mami
Kybernetika (2018)
- Volume: 54, Issue: 2, page 351-362
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topOuadjed, Hakim, and Mami, Tawfiq Fawzi. "Estimation for heavy tailed moving average process." Kybernetika 54.2 (2018): 351-362. <http://eudml.org/doc/294147>.
@article{Ouadjed2018,
abstract = {In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations using the relationship between the extremal index and the moving average parameter. We analyze their performance through a simulation study.},
author = {Ouadjed, Hakim, Mami, Tawfiq Fawzi},
journal = {Kybernetika},
keywords = {extreme value theory; mixing processes; tail index estimation},
language = {eng},
number = {2},
pages = {351-362},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Estimation for heavy tailed moving average process},
url = {http://eudml.org/doc/294147},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Ouadjed, Hakim
AU - Mami, Tawfiq Fawzi
TI - Estimation for heavy tailed moving average process
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 2
SP - 351
EP - 362
AB - In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations using the relationship between the extremal index and the moving average parameter. We analyze their performance through a simulation study.
LA - eng
KW - extreme value theory; mixing processes; tail index estimation
UR - http://eudml.org/doc/294147
ER -
References
top- Brockwell, P. J., Davis, R. A., 10.1007/978-1-4419-0320-4, Springer-Verlag, New York 1991. MR1093459DOI10.1007/978-1-4419-0320-4
- Cheng, S., Peng, L., 10.2307/3318540, Bernoulli 7 (2001), 751-760. MR1867084DOI10.2307/3318540
- Drees, H., 10.1214/aoap/1019487617, Ann. Appl. Probab. 10 (2000), 1274-1301. MR1810875DOI10.1214/aoap/1019487617
- Drees, H., 10.3150/bj/1066223272, Bernoulli 9 (2003), 617-657. MR1996273DOI10.3150/bj/1066223272
- Fabián, Z., Stehlík, M., On Robust and Distribution Sensitive Hill Like Method., Tech. Rep. IFAS Reasearch Paper Series 43 (2009).
- Feigin, P. D., Kratz, M. F., Resnick, S. I., 10.1214/aoap/1035463327, Ann. Appl. Probab. 6 (1996), 1157-1190. MR1422981DOI10.1214/aoap/1035463327
- Ferro, C. A. T., Segers, J., 10.1111/1467-9868.00401, J. Roy. Statist. Soc., Ser. B 65 (2003), 545-556. MR1983763DOI10.1111/1467-9868.00401
- Fisher, R. A., Tippett, L. H. C., 10.1017/S0305004100015681, Math. Proc. Cambridge Philosophical Soc. 24 (1928), 180-190. DOI10.1017/S0305004100015681
- Haan, L. de, Mercadier, C., Zhou, C., 10.1007/s00780-015-0287-6, Finance Stoch. 20 (2016), 321-354. MR3479324DOI10.1007/s00780-015-0287-6
- Hall, P., Welsh, A. H., 10.1214/aos/1176346596, Ann. Statist. 13 (1985), 331-341. MR0773171DOI10.1214/aos/1176346596
- Hill, B. M., 10.1214/aos/1176343247, Ann. Statist. 3 (1975), 1163-1174. MR0378204DOI10.1214/aos/1176343247
- Jordanova, P., Stehlík, M., Fabián, Z., Střelec, L., On estimation and testing for Pareto tails., Pliska Stud. Math. Bulgar. 22 (2013), 89-108. MR3203698
- Jordanova, P., Dušek, J., Stehlík, M., 10.1016/j.chemolab.2012.12.006, Chemometrics and Intelligent Laboratory Systems 122 (2013), 40-49. DOI10.1016/j.chemolab.2012.12.006
- Jordanova, P., Fabián, Z., Hermann, P., Střelec, L., Rivera, A., Girard, S., Torres, S., Stehlík, M., 10.1007/s10687-016-0256-2, Extremes 19 (2016), 591-626. MR3558347DOI10.1007/s10687-016-0256-2
- Koutrouvelis, I. A., 10.1080/01621459.1980.10477573, J. Amer. Statist. Assoc. 75 (1980), 918-928. MR0600977DOI10.1080/01621459.1980.10477573
- Leadbetter, M. R., Lindgren, G., Rootzen, H., 10.1007/978-1-4612-5449-2, Springer-Verlag, New York 1983. MR0691492DOI10.1007/978-1-4612-5449-2
- Mami, T. F., Ouadjed, H., Semi parametric estimation for autoregressive process with infinite variance., ProbStat Forum 9 (2016), 73-79.
- McCulloch, J. H., 10.1080/03610918608812563, Commun. Statist. - Simulation and Computation 15 (1986), 1109-1136. Zbl0612.62028MR0876783DOI10.1080/03610918608812563
- Meerschaert, M. M., Scheffler, H. P, 10.1016/s0378-3758(98)00093-7, J. Statist. Planning Inference 71 (1998), 19-34. MR1651847DOI10.1016/s0378-3758(98)00093-7
- Neves, C., Alves, M. I. Fraga, 10.1016/j.csda.2003.11.011, Comput. Statist. Data Anal. 47 (2004), 689-704. MR2086488DOI10.1016/j.csda.2003.11.011
- Nolan, J. P., 10.1007/978-1-4612-0197-7_17, In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhäuser, Boston 2001. Zbl0971.62008MR1833689DOI10.1007/978-1-4612-0197-7_17
- Samorodnitsky, G., Taqqu, M., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance., Chapman and Hall, New York 1994. MR1280932
- Smith, R. L., Weissman, I., Estimating the extremal index., J. Roy. Statist. Soc., Ser. B 56 (1994), 515-528. MR1278224
- Süveges, M., 10.1007/s10687-007-0034-2, Extremes 10 (2007), 41-55. MR2407640DOI10.1007/s10687-007-0034-2
- Weissman, I., Novak, S. Y., 10.1016/s0378-3758(97)00095-5, J. Statist. Planning Inference 66 (1998), 281-288. MR1614480DOI10.1016/s0378-3758(97)00095-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.