-strongly Gorenstein graded modules
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 1, page 55-73
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGao, Zenghui, and Peng, Jie. "$n$-strongly Gorenstein graded modules." Czechoslovak Mathematical Journal 69.1 (2019): 55-73. <http://eudml.org/doc/294148>.
@article{Gao2019,
abstract = {Let $R$ be a graded ring and $n\ge 1$ an integer. We introduce and study $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that $n$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be $m$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever $n>m$. Many properties of the $n$-strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized. Then we investigate the relations between the graded and the ungraded $n$-strongly Gorenstein injective (or flat) modules. In addition, the connections between the $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules are considered.},
author = {Gao, Zenghui, Peng, Jie},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-strongly Gorenstein gr-injective module; $n$-strongly Gorenstein gr-flat module; $n$-strongly Gorenstein gr-projective module},
language = {eng},
number = {1},
pages = {55-73},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$n$-strongly Gorenstein graded modules},
url = {http://eudml.org/doc/294148},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Gao, Zenghui
AU - Peng, Jie
TI - $n$-strongly Gorenstein graded modules
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 55
EP - 73
AB - Let $R$ be a graded ring and $n\ge 1$ an integer. We introduce and study $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that $n$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be $m$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever $n>m$. Many properties of the $n$-strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized. Then we investigate the relations between the graded and the ungraded $n$-strongly Gorenstein injective (or flat) modules. In addition, the connections between the $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules are considered.
LA - eng
KW - $n$-strongly Gorenstein gr-injective module; $n$-strongly Gorenstein gr-flat module; $n$-strongly Gorenstein gr-projective module
UR - http://eudml.org/doc/294148
ER -
References
top- Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1080/00927879808826128, Commun. Algebra 26 (1998), 225-240. (1998) Zbl0895.16020MR1600686DOI10.1080/00927879808826128
- Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1080/00927879808826336, Commun. Algebra 26 (1998), 3195-3209. (1998) Zbl0912.16022MR1641595DOI10.1080/00927879808826336
- Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1006/jabr.1998.7722, J. Algebra 215 (1999), 437-459. (1999) Zbl0942.16049MR1686200DOI10.1006/jabr.1998.7722
- Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1201/9780203903889.ch1, Algebra and Number Theory. Proc. Conf., Fez, Morocco M. Boulagouaz Lecture Notes in Pure and Appl. Math. 208, Marcel Dekker, New York (2000), 1-11. (2000) Zbl0963.16041MR1724670DOI10.1201/9780203903889.ch1
- Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1080/00927870008827019, Commun. Algebra 28 (2000), 3197-3207. (2000) Zbl0998.16031MR1765311DOI10.1080/00927870008827019
- Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1081/AGB-120022797, Commun. Algebra 31 (2003), 4371-4385. (2003) Zbl1042.16036MR1995540DOI10.1081/AGB-120022797
- Auslander, M., Bridger, M., 10.1090/memo/0094, Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence (1969). (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
- Bennis, D., Mahdou, N., 10.1016/j.jpaa.2006.10.010, J. Pure Appl. Algebra 210 (2007), 437-445. (2007) Zbl1118.13014MR2320007DOI10.1016/j.jpaa.2006.10.010
- Bennis, D., Mahdou, N., 10.1142/S021949880900328X, J. Algebra Appl. 8 (2009), 219-227. (2009) Zbl1176.16008MR2514856DOI10.1142/S021949880900328X
- Christensen, L. W., 10.1007/BFb0103980, Lecture Notes in Mathematics 1747. Springer, Berlin (2000). (2000) Zbl0965.13010MR1799866DOI10.1007/BFb0103980
- Ding, N. Q., Chen, J. L., 10.1007/BF02599307, Manuscr. Math. 78 (1993), 165-177. (1993) Zbl0804.16005MR1202159DOI10.1007/BF02599307
- Ding, N. Q., Chen, J. L., 10.1080/00927879608825724, Commun. Algebra 24 (1996), 2963-2980. (1996) Zbl0855.16001MR1396867DOI10.1080/00927879608825724
- Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de De Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
- Enochs, E. E., Jenda, O. M. G., Torrecillas, B., Gorenstein flat modules, J. Nanjing Univ., Math. Biq. 10 (1993), 1-9. (1993) Zbl0794.16001MR1248299
- Enochs, E. E., Ramos, J. A. López, Gorenstein Flat Modules, Nova Science Publishers, Huntington (2001). (2001) Zbl1157.16300MR2017116
- Rozas, J. R. García, López-Ramos, J. A., Torrecillas, B., 10.1081/AGB-100105025, Commun. Algebra 29 (2001), 3341-3349. (2001) Zbl0992.16034MR1849490DOI10.1081/AGB-100105025
- Hermann, M., Ikeda, S., Orbanz, U., 10.1007/978-3-642-61349-4, Springer, Berlin (1988). (1988) Zbl0649.13011MR0954831DOI10.1007/978-3-642-61349-4
- Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
- Mao, L. X., 10.1007/s11464-016-0595-y, Front. Math. China 12 (2017), 157-176. (2017) Zbl06823674MR3569672DOI10.1007/s11464-016-0595-y
- Năstăsescu, C., 10.1016/0021-8693(89)90192-0, J. Algebra 120 (1989), 119-138. (1989) Zbl0678.16001MR0977864DOI10.1016/0021-8693(89)90192-0
- Năstăsescu, C., Oystaeyen, F. Van, Graded Ring Theory, North-Holland Mathematical Library 28, North-Holland Publishing Company, Amsterdam (1982). (1982) Zbl0494.16001MR0676974
- Năstăsescu, C., Oystaeyen, F. Van, 10.1007/b94904, Lecture Notes in Mathematics 1836, Springer, Berlin (2004). (2004) Zbl1043.16017MR2046303DOI10.1007/b94904
- Stenström, B., Rings of Quotients, Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975), German. (1975) Zbl0296.16001MR0389953
- Yang, X., Liu, Z., 10.1016/j.jalgebra.2008.07.006, J. Algebra 320 (2008), 2659-2674. (2008) Zbl1173.16006MR2441993DOI10.1016/j.jalgebra.2008.07.006
- Yang, X., Liu, Z., FP-gr-injective modules, Math. J. Okayama Univ. 53 (2011), 83-100. (2011) Zbl1222.16029MR2778885
- Zhao, G. Q., Huang, Z. Y., 10.1080/00927872.2010.496749, Commun. Algebra 39 (2011), 3044-3062. (2011) Zbl1247.16007MR2834145DOI10.1080/00927872.2010.496749
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.