n -strongly Gorenstein graded modules

Zenghui Gao; Jie Peng

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 55-73
  • ISSN: 0011-4642

Abstract

top
Let R be a graded ring and n 1 an integer. We introduce and study n -strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that n -strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be m -strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever n > m . Many properties of the n -strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized. Then we investigate the relations between the graded and the ungraded n -strongly Gorenstein injective (or flat) modules. In addition, the connections between the n -strongly Gorenstein gr-projective, gr-injective and gr-flat modules are considered.

How to cite

top

Gao, Zenghui, and Peng, Jie. "$n$-strongly Gorenstein graded modules." Czechoslovak Mathematical Journal 69.1 (2019): 55-73. <http://eudml.org/doc/294148>.

@article{Gao2019,
abstract = {Let $R$ be a graded ring and $n\ge 1$ an integer. We introduce and study $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that $n$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be $m$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever $n>m$. Many properties of the $n$-strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized. Then we investigate the relations between the graded and the ungraded $n$-strongly Gorenstein injective (or flat) modules. In addition, the connections between the $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules are considered.},
author = {Gao, Zenghui, Peng, Jie},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-strongly Gorenstein gr-injective module; $n$-strongly Gorenstein gr-flat module; $n$-strongly Gorenstein gr-projective module},
language = {eng},
number = {1},
pages = {55-73},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$n$-strongly Gorenstein graded modules},
url = {http://eudml.org/doc/294148},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Gao, Zenghui
AU - Peng, Jie
TI - $n$-strongly Gorenstein graded modules
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 55
EP - 73
AB - Let $R$ be a graded ring and $n\ge 1$ an integer. We introduce and study $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that $n$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be $m$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever $n>m$. Many properties of the $n$-strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized. Then we investigate the relations between the graded and the ungraded $n$-strongly Gorenstein injective (or flat) modules. In addition, the connections between the $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules are considered.
LA - eng
KW - $n$-strongly Gorenstein gr-injective module; $n$-strongly Gorenstein gr-flat module; $n$-strongly Gorenstein gr-projective module
UR - http://eudml.org/doc/294148
ER -

References

top
  1. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1080/00927879808826128, Commun. Algebra 26 (1998), 225-240. (1998) Zbl0895.16020MR1600686DOI10.1080/00927879808826128
  2. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1080/00927879808826336, Commun. Algebra 26 (1998), 3195-3209. (1998) Zbl0912.16022MR1641595DOI10.1080/00927879808826336
  3. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1006/jabr.1998.7722, J. Algebra 215 (1999), 437-459. (1999) Zbl0942.16049MR1686200DOI10.1006/jabr.1998.7722
  4. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1201/9780203903889.ch1, Algebra and Number Theory. Proc. Conf., Fez, Morocco M. Boulagouaz Lecture Notes in Pure and Appl. Math. 208, Marcel Dekker, New York (2000), 1-11. (2000) Zbl0963.16041MR1724670DOI10.1201/9780203903889.ch1
  5. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1080/00927870008827019, Commun. Algebra 28 (2000), 3197-3207. (2000) Zbl0998.16031MR1765311DOI10.1080/00927870008827019
  6. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1081/AGB-120022797, Commun. Algebra 31 (2003), 4371-4385. (2003) Zbl1042.16036MR1995540DOI10.1081/AGB-120022797
  7. Auslander, M., Bridger, M., 10.1090/memo/0094, Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence (1969). (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
  8. Bennis, D., Mahdou, N., 10.1016/j.jpaa.2006.10.010, J. Pure Appl. Algebra 210 (2007), 437-445. (2007) Zbl1118.13014MR2320007DOI10.1016/j.jpaa.2006.10.010
  9. Bennis, D., Mahdou, N., 10.1142/S021949880900328X, J. Algebra Appl. 8 (2009), 219-227. (2009) Zbl1176.16008MR2514856DOI10.1142/S021949880900328X
  10. Christensen, L. W., 10.1007/BFb0103980, Lecture Notes in Mathematics 1747. Springer, Berlin (2000). (2000) Zbl0965.13010MR1799866DOI10.1007/BFb0103980
  11. Ding, N. Q., Chen, J. L., 10.1007/BF02599307, Manuscr. Math. 78 (1993), 165-177. (1993) Zbl0804.16005MR1202159DOI10.1007/BF02599307
  12. Ding, N. Q., Chen, J. L., 10.1080/00927879608825724, Commun. Algebra 24 (1996), 2963-2980. (1996) Zbl0855.16001MR1396867DOI10.1080/00927879608825724
  13. Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
  14. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de De Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
  15. Enochs, E. E., Jenda, O. M. G., Torrecillas, B., Gorenstein flat modules, J. Nanjing Univ., Math. Biq. 10 (1993), 1-9. (1993) Zbl0794.16001MR1248299
  16. Enochs, E. E., Ramos, J. A. López, Gorenstein Flat Modules, Nova Science Publishers, Huntington (2001). (2001) Zbl1157.16300MR2017116
  17. Rozas, J. R. García, López-Ramos, J. A., Torrecillas, B., 10.1081/AGB-100105025, Commun. Algebra 29 (2001), 3341-3349. (2001) Zbl0992.16034MR1849490DOI10.1081/AGB-100105025
  18. Hermann, M., Ikeda, S., Orbanz, U., 10.1007/978-3-642-61349-4, Springer, Berlin (1988). (1988) Zbl0649.13011MR0954831DOI10.1007/978-3-642-61349-4
  19. Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
  20. Mao, L. X., 10.1007/s11464-016-0595-y, Front. Math. China 12 (2017), 157-176. (2017) Zbl06823674MR3569672DOI10.1007/s11464-016-0595-y
  21. Năstăsescu, C., 10.1016/0021-8693(89)90192-0, J. Algebra 120 (1989), 119-138. (1989) Zbl0678.16001MR0977864DOI10.1016/0021-8693(89)90192-0
  22. Năstăsescu, C., Oystaeyen, F. Van, Graded Ring Theory, North-Holland Mathematical Library 28, North-Holland Publishing Company, Amsterdam (1982). (1982) Zbl0494.16001MR0676974
  23. Năstăsescu, C., Oystaeyen, F. Van, 10.1007/b94904, Lecture Notes in Mathematics 1836, Springer, Berlin (2004). (2004) Zbl1043.16017MR2046303DOI10.1007/b94904
  24. Stenström, B., Rings of Quotients, Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975), German. (1975) Zbl0296.16001MR0389953
  25. Yang, X., Liu, Z., 10.1016/j.jalgebra.2008.07.006, J. Algebra 320 (2008), 2659-2674. (2008) Zbl1173.16006MR2441993DOI10.1016/j.jalgebra.2008.07.006
  26. Yang, X., Liu, Z., FP-gr-injective modules, Math. J. Okayama Univ. 53 (2011), 83-100. (2011) Zbl1222.16029MR2778885
  27. Zhao, G. Q., Huang, Z. Y., 10.1080/00927872.2010.496749, Commun. Algebra 39 (2011), 3044-3062. (2011) Zbl1247.16007MR2834145DOI10.1080/00927872.2010.496749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.