n - gr -coherent rings and Gorenstein graded modules

Mostafa Amini; Driss Bennis; Soumia Mamdouhi

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 125-148
  • ISSN: 0011-4642

Abstract

top
Let R be a graded ring and n 1 be an integer. We introduce and study the notions of Gorenstein n -FP-gr-injective and Gorenstein n -gr-flat modules by using the notion of special finitely presented graded modules. On n -gr-coherent rings, we investigate the relationships between Gorenstein n -FP-gr-injective and Gorenstein n -gr-flat modules. Among other results, we prove that any graded module in R -gr (or gr- R ) admits a Gorenstein n -FP-gr-injective (or Gorenstein n -gr-flat) cover and preenvelope, respectively.

How to cite

top

Amini, Mostafa, Bennis, Driss, and Mamdouhi, Soumia. "$n$-${\rm gr}$-coherent rings and Gorenstein graded modules." Czechoslovak Mathematical Journal 72.1 (2022): 125-148. <http://eudml.org/doc/297862>.

@article{Amini2022,
abstract = {Let $R$ be a graded ring and $n\ge 1$ be an integer. We introduce and study the notions of Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules by using the notion of special finitely presented graded modules. On $n$-gr-coherent rings, we investigate the relationships between Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules. Among other results, we prove that any graded module in $R$-gr (or gr-$R$) admits a Gorenstein $n$-FP-gr-injective (or Gorenstein $n$-gr-flat) cover and preenvelope, respectively.},
author = {Amini, Mostafa, Bennis, Driss, Mamdouhi, Soumia},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-gr-coherent ring; Gorenstein $n$-FP-gr-injective module; Gorenstein $n$-gr-flat module; cover; (pre)envelope},
language = {eng},
number = {1},
pages = {125-148},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$n$-$\{\rm gr\}$-coherent rings and Gorenstein graded modules},
url = {http://eudml.org/doc/297862},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Amini, Mostafa
AU - Bennis, Driss
AU - Mamdouhi, Soumia
TI - $n$-${\rm gr}$-coherent rings and Gorenstein graded modules
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 125
EP - 148
AB - Let $R$ be a graded ring and $n\ge 1$ be an integer. We introduce and study the notions of Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules by using the notion of special finitely presented graded modules. On $n$-gr-coherent rings, we investigate the relationships between Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules. Among other results, we prove that any graded module in $R$-gr (or gr-$R$) admits a Gorenstein $n$-FP-gr-injective (or Gorenstein $n$-gr-flat) cover and preenvelope, respectively.
LA - eng
KW - $n$-gr-coherent ring; Gorenstein $n$-FP-gr-injective module; Gorenstein $n$-gr-flat module; cover; (pre)envelope
UR - http://eudml.org/doc/297862
ER -

References

top
  1. Adarbeh, K., Kabbaj, S., 10.2989/16073606.2018.1533900, Quaest. Math. 43 (2020), 45-54. (2020) Zbl1431.13013MR4058586DOI10.2989/16073606.2018.1533900
  2. Anderson, D. D., Bennis, D., Fahid, B., Shaiea, A., 10.1216/RMJ-2017-47-8-2439, Rocky Mt. J. Math. 47 (2017), 2439-2511. (2017) Zbl1390.13025MR3760303DOI10.1216/RMJ-2017-47-8-2439
  3. Anderson, D. D., Winders, M., 10.1216/JCA-2009-1-1-3, J. Commun. Algebra 1 (2009), 3-56. (2009) Zbl1194.13002MR2462381DOI10.1216/JCA-2009-1-1-3
  4. Hügel, L. Angeleri, Herbera, D., Trlifaj, J., 10.1515/FORUM.2006.013, Forum Math. 18 (2006), 211-229. (2006) Zbl1107.16010MR2218418DOI10.1515/FORUM.2006.013
  5. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1080/00927879808826336, Commun. Algebra 26 (1998), 3195-3209. (1998) Zbl0912.16022MR1641595DOI10.1080/00927879808826336
  6. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1080/00927879808826128, Commun. Algebra 26 (1998), 225-240. (1998) Zbl0895.16020MR1600686DOI10.1080/00927879808826128
  7. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1006/jabr.1998.7722, J. Algebra 215 (1999), 437-457. (1999) Zbl0942.16049MR1686200DOI10.1006/jabr.1998.7722
  8. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1201/9780203903889.CH1, Algebra and Number Theory Lecture Notes in Pure and Applied Mathematics 208. Marcel Dekker, New York (2000), 1-11. (2000) Zbl0963.16041MR1724670DOI10.1201/9780203903889.CH1
  9. Asensio, M. J., Ramos, J. A. López, Torrecillas, B., 10.1080/00927870008827019, Commun. Algebra 28 (2000), 3197-3207. (2000) Zbl0998.16031MR1765311DOI10.1080/00927870008827019
  10. Bravo, D., Pérez, M. A., 10.1016/j.jpaa.2016.09.008, J. Pure Appl. Algebra 221 (2017), 1249-1267. (2017) Zbl1362.18019MR3599429DOI10.1016/j.jpaa.2016.09.008
  11. Chen, J., Ding, N., 10.1080/00927879608825742, Commun. Algebra 24 (1996), 3211-3216. (1996) Zbl0877.16010MR1402554DOI10.1080/00927879608825742
  12. Costa, D. L., 10.1080/00927879408825061, Commun. Algebra 22 (1994), 3997-4011. (1994) Zbl0814.13010MR1280104DOI10.1080/00927879408825061
  13. Dobbs, D. E., Kabbaj, S.-E., Mahdou, N., n -coherent rings and modules, Commutative ring theory Lecture Notes in Pure and Applied Mathematics 185. Marcel Dekker, New York (1997), 269-281. (1997) Zbl0947.13011MR1422485
  14. Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
  15. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
  16. Enochs, E. E., Jenda, O. M. G., Torrecillas, B., Gorenstein flat modules, J. Nanjing Univ, Math. Biq. 10 (1993), 1-9. (1993) Zbl0794.16001MR1248299
  17. Fossum, R. M., Griffith, P. A., Reiten, I., 10.1007/BFb0065404, Lecture Notes in Mathematics 456. Springer, Berlin (1975). (1975) Zbl0303.18006MR0389981DOI10.1007/BFb0065404
  18. Gao, Z., Peng, J., 10.21136/CMJ.2018.0160-17, Czech. Math. J. 69 (2019), 55-73. (2019) Zbl07088769MR3923574DOI10.21136/CMJ.2018.0160-17
  19. Gao, Z., Wang, F., 10.1080/00927872.2011.554473, Commun. Algebra 40 (2012), 1669-1679. (2012) Zbl1257.16004MR2924475DOI10.1080/00927872.2011.554473
  20. Rozas, J. R. García, Ramos, J. A. López, Torrecillas, B., 10.1081/AGB-100105025, Commun. Algebra 29 (2001), 3341-3349. (2001) Zbl0992.16034MR1849490DOI10.1081/AGB-100105025
  21. Gillespie, J., 10.4310/HHA.2010.v12.n1.a6, Homology Homotopy Appl. 12 (2010), 61-73. (2010) Zbl1231.16005MR2607410DOI10.4310/HHA.2010.v12.n1.a6
  22. Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
  23. Holm, H., Jørgensen, P., 10.1216/JCA-2009-1-4-621, J. Commun. Algebra 1 (2009), 621-633. (2009) Zbl1184.13042MR2575834DOI10.1216/JCA-2009-1-4-621
  24. Mahdou, N., 10.1081/AGB-4986, Commun. Algebra 29 (2001), 2775-2785. (2001) Zbl1016.13010MR1848381DOI10.1081/AGB-4986
  25. Mao, L., 10.1017/S0017089517000155, Glasg. Math. J. 60 (2018), 339-360. (2018) Zbl1444.16055MR3784053DOI10.1017/S0017089517000155
  26. Mao, L., Ding, N., 10.1142/S0219498808002953, J. Algebra Appl. 7 (2008), 491-506. (2008) Zbl1165.16004MR2442073DOI10.1142/S0219498808002953
  27. Matlis, E., 10.2140/pjm.1958.8.511, Pac. J. Math. 8 (1958), 511-528. (1958) Zbl0084.26601MR0099360DOI10.2140/pjm.1958.8.511
  28. Năstăsescu, C., 10.1016/0021-8693(89)90192-0, J. Algebra 120 (1989), 119-138. (1989) Zbl0678.16001MR0977864DOI10.1016/0021-8693(89)90192-0
  29. Năstăsescu, C., Oystaeyen, F. Van, 10.1016/s0924-6509(08)x7017-5, North-Holland Mathematical Library 28. North-Holland, Amsterdam (1982). (1982) Zbl0494.16001MR0676974DOI10.1016/s0924-6509(08)x7017-5
  30. Năstăsescu, C., Oystaeyen, F. Van, 10.1007/b94904, Lecture Notes in Mathematics 1836. Springer, Berlin (2004). (2004) Zbl1043.16017MR2046303DOI10.1007/b94904
  31. Roos, J.-E., 10.1017/CBO9781107325517.016, Commutative Algebra London Mathematical Society Lectures Notes in Mathematics 72. Cambridge University Press, Cambridge (1981), 179-204. (1981) Zbl0516.13013MR0693636DOI10.1017/CBO9781107325517.016
  32. Rotman, J. J., 10.1007/b98977, Universitext. Springer, New York (2009). (2009) Zbl1157.18001MR2455920DOI10.1007/b98977
  33. Xu, J., 10.1007/BFb0094173, Lecture Notes in Mathematics 1634. Springer, Berlin (1996). (1996) Zbl0860.16002MR1438789DOI10.1007/BFb0094173
  34. Yang, X., Liu, Z., FP-gr-injective modules, Math. J. Okayama Univ. 53 (2011), 83-100. (2011) Zbl1222.16029MR2778885
  35. Zhao, T., Gao, Z., Huang, Z., 10.1142/S021819671850042X, Int. J. Algebra Comput. 28 (2018), 959-977. (2018) Zbl1397.16006MR3855003DOI10.1142/S021819671850042X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.