The elliptic problems in a family of planar open sets

Abdelkader Tami

Applications of Mathematics (2019)

  • Volume: 64, Issue: 5, page 485-499
  • ISSN: 0862-7940

Abstract

top
We propose, on a model case, a new approach to classical results obtained by V. A. Kondrat'ev (1967), P. Grisvard (1972), (1985), H. Blum and R. Rannacher (1980), V. G. Maz'ya (1980), (1984), (1992), S. Nicaise (1994a), (1994b), (1994c), M. Dauge (1988), (1990), (1993a), (1993b), A. Tami (2016), and others, describing the singularities of solutions of an elliptic problem on a polygonal domain of the plane that may appear near a corner. It provides a more precise description of how the solutions decompose, puts into evidence the analogy of such decompositions with standard Taylor expansions, and gives uniform estimates with respect to the angle parameter. This last property allows the treatment of families of elliptic problems on families of open sets.

How to cite

top

Tami, Abdelkader. "The elliptic problems in a family of planar open sets." Applications of Mathematics 64.5 (2019): 485-499. <http://eudml.org/doc/294149>.

@article{Tami2019,
abstract = {We propose, on a model case, a new approach to classical results obtained by V. A. Kondrat'ev (1967), P. Grisvard (1972), (1985), H. Blum and R. Rannacher (1980), V. G. Maz'ya (1980), (1984), (1992), S. Nicaise (1994a), (1994b), (1994c), M. Dauge (1988), (1990), (1993a), (1993b), A. Tami (2016), and others, describing the singularities of solutions of an elliptic problem on a polygonal domain of the plane that may appear near a corner. It provides a more precise description of how the solutions decompose, puts into evidence the analogy of such decompositions with standard Taylor expansions, and gives uniform estimates with respect to the angle parameter. This last property allows the treatment of families of elliptic problems on families of open sets.},
author = {Tami, Abdelkader},
journal = {Applications of Mathematics},
keywords = {biharmonic operator; elliptic problems; nonsmooth boundaries; uniform singularity estimates; Sobolev spaces},
language = {eng},
number = {5},
pages = {485-499},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The elliptic problems in a family of planar open sets},
url = {http://eudml.org/doc/294149},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Tami, Abdelkader
TI - The elliptic problems in a family of planar open sets
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 5
SP - 485
EP - 499
AB - We propose, on a model case, a new approach to classical results obtained by V. A. Kondrat'ev (1967), P. Grisvard (1972), (1985), H. Blum and R. Rannacher (1980), V. G. Maz'ya (1980), (1984), (1992), S. Nicaise (1994a), (1994b), (1994c), M. Dauge (1988), (1990), (1993a), (1993b), A. Tami (2016), and others, describing the singularities of solutions of an elliptic problem on a polygonal domain of the plane that may appear near a corner. It provides a more precise description of how the solutions decompose, puts into evidence the analogy of such decompositions with standard Taylor expansions, and gives uniform estimates with respect to the angle parameter. This last property allows the treatment of families of elliptic problems on families of open sets.
LA - eng
KW - biharmonic operator; elliptic problems; nonsmooth boundaries; uniform singularity estimates; Sobolev spaces
UR - http://eudml.org/doc/294149
ER -

References

top
  1. Blum, H., Rannacher, R., 10.1002/mma.1670020416, Math. Methods Appl. Sci. 2 (1980), 556-581. (1980) Zbl0445.35023MR0595625DOI10.1002/mma.1670020416
  2. Costabel, M., Dauge, M., 10.1017/S0308210500021272, Proc. R. Soc. Edinb., Sect. A 123 (1993), 109-155. (1993) Zbl0791.35032MR1204855DOI10.1017/S0308210500021272
  3. Costabel, M., Dauge, M., 10.1017/S0308210500021284, Proc. R. Soc. Edinb., Sect. A 123 (1993), 157-184. (1993) Zbl0791.35033MR1204855DOI10.1017/S0308210500021284
  4. Dauge, M., 10.1007/BFb0086682, Lecture Notes in Mathematics 1341, Springer, Berlin (1988). (1988) Zbl0668.35001MR0961439DOI10.1007/BFb0086682
  5. Dauge, M., Nicaise, S., Bourlard, M., Lubuma, J. M.-S., 10.1051/m2an/1990240100271, RAIRO, Modélisation Math. Anal. Numér. 24 (1990), 27-52 French. (1990) Zbl0691.35023MR1034897DOI10.1051/m2an/1990240100271
  6. Grisvard, P., Alternative de Fredholm relative au problème de Dirichlet dans un polygone ou un polyèdre, Boll. Unione Mat. Ital., IV. Ser. 5 (1972), 132-164 French. (1972) Zbl0277.35035MR0312068
  7. Grisvard, P., 10.1137/1.9781611972030, Monographs and Studies in Mathematics 24, Pitman Advanced Publishing Program, Pitman Publishing, Boston (1985). (1985) Zbl0695.35060MR0775683DOI10.1137/1.9781611972030
  8. Kondrat'ev, V. A., Boundary problems for elliptic equations in domains with conical or angular points, Trans. Mosc. Math. Soc. 16 (1967), 227-313 Translated from Trudy Moskov. Mat. Obšč. 16 1967 209-292. (1967) Zbl0194.13405MR0226187
  9. Maz'ya, V. G., Plamenevskij, B. A., L p -estimates of solutions of elliptic boundary value problems in domains with edges, Trans. Mosc. Math. Soc. (1980), 49-97. (1980) Zbl0453.35025MR0514327
  10. Maz'ya, V. G., Plamenevskij, B. A., 10.1002/mana.19780810103, Transl., Ser. 2, Am. Math. Soc. 123 (1984), 1-56 Translated from Math. Nachr. 81 1978 25-82. (1984) Zbl0554.35035MR0492821DOI10.1002/mana.19780810103
  11. Maz'ya, V., Rossmann, J., 10.1002/mana.19921550115, Math. Nachr. 155 (1992), 199-220. (1992) Zbl0794.35039MR1231265DOI10.1002/mana.19921550115
  12. Nicaise, S., 10.1002/mma.1670170104, Math. Methods Appl. Sci. 17 (1994), 21-39. (1994) Zbl0820.35041MR1257586DOI10.1002/mma.1670170104
  13. Nicaise, S., Sändig, A.-M., 10.1002/mma.1670170602, Math. Methods Appl. Sci. 17 (1994), 395-429. (1994) Zbl0824.35014MR1274152DOI10.1002/mma.1670170602
  14. Nicaise, S., Sändig, A.-M., 10.1002/mma.1670170603, Math. Methods Appl. Sci. 17 (1994), 431-450. (1994) Zbl0824.35015MR1274152DOI10.1002/mma.1670170603
  15. Tami, A., Etude d'un problème pour le bilaplacien dans une famille d'ouverts du plan, Ph.D. Thesis, Aix-Marseille University France (2016). Available at https://www.theses.fr/224126822 French. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.