Page 1

Displaying 1 – 16 of 16

Showing per page

A population biological model with a singular nonlinearity

Sayyed Hashem Rasouli (2014)

Applications of Mathematics

We consider the existence of positive solutions of the singular nonlinear semipositone problem of the form - div ( | x | - α p | u | p - 2 u ) = | x | - ( α + 1 ) p + β a u p - 1 - f ( u ) - c u γ , x Ω , u = 0 , x Ω , where Ω is a bounded smooth domain of N with 0 Ω , 1 < p < N , 0 α < ( N - p ) / p , γ ( 0 , 1 ) , and a , β , c and λ are positive parameters. Here f : [ 0 , ) is a continuous function. This model arises in the studies of population biology of one species with u representing the concentration of the species. We discuss the existence of a positive solution when f satisfies certain additional conditions. We use the method of sub-supersolutions...

Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential

Veronica Felli, Alberto Ferrero, Susanna Terracini (2011)

Journal of the European Mathematical Society

Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order −1.

Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition

Zonghu Xiu, Caisheng Chen (2013)

Annales Polonici Mathematici

We consider the existence and nonexistence of solutions for the following singular quasi-linear elliptic problem with concave and convex nonlinearities: ⎧ - d i v ( | x | - a p | u | p - 2 u ) + h ( x ) | u | p - 2 u = g ( x ) | u | r - 2 u , x ∈ Ω, ⎨ ⎩ | x | - a p | u | p - 2 u / ν = λ f ( x ) | u | q - 2 u , x ∈ ∂Ω, where Ω is an exterior domain in N , that is, Ω = N D , where D is a bounded domain in N with smooth boundary ∂D(=∂Ω), and 0 ∈ Ω. Here λ > 0, 0 ≤ a < (N-p)/p, 1 < p< N, ∂/∂ν is the outward normal derivative on ∂Ω. By the variational method, we prove the existence of multiple solutions. By the test function method,...

Low regularity Cauchy theory for the water-waves problem: canals and swimming pools

T. Alazard, N. Burq, C. Zuily (2011)

Journées Équations aux dérivées partielles

The purpose of this talk is to present some recent results about the Cauchy theory of the gravity water waves equations (without surface tension). In particular, we clarify the theory as well in terms of regularity indexes for the initial conditions as fin terms of smoothness of the bottom of the domain (namely no regularity assumption is assumed on the bottom). Our main result is that, following the approach developed in [1, 2], after suitable para-linearizations, the system can be arranged into...

Multiplicity of solutions for a singular p-laplacian elliptic equation

Wen-shu Zhou, Xiao-dan Wei (2010)

Annales Polonici Mathematici

The existence of two continuous solutions for a nonlinear singular elliptic equation with natural growth in the gradient is proved for the Dirichlet problem in the unit ball centered at the origin. The first continuous solution is positive and maximal; it is obtained via the regularization method. The second continuous solution is zero at the origin, and follows by considering the corresponding radial ODE and by sub-sup solutions method.

Solutions to a class of singular quasilinear elliptic equations

Lin Wei, Zuodong Yang (2010)

Annales Polonici Mathematici

We study the existence of positive solutions to ⎧ d i v ( | u | p - 2 u ) + q ( x ) u - γ = 0 on Ω, ⎨ ⎩ u = 0 on ∂Ω, where Ω is N or an unbounded domain, q(x) is locally Hölder continuous on Ω and p > 1, γ > -(p-1).

The elliptic problems in a family of planar open sets

Abdelkader Tami (2019)

Applications of Mathematics

We propose, on a model case, a new approach to classical results obtained by V. A. Kondrat'ev (1967), P. Grisvard (1972), (1985), H. Blum and R. Rannacher (1980), V. G. Maz'ya (1980), (1984), (1992), S. Nicaise (1994a), (1994b), (1994c), M. Dauge (1988), (1990), (1993a), (1993b), A. Tami (2016), and others, describing the singularities of solutions of an elliptic problem on a polygonal domain of the plane that may appear near a corner. It provides a more precise description of how the solutions...

Currently displaying 1 – 16 of 16

Page 1