Generalized reverse derivations and commutativity of prime rings
Communications in Mathematics (2019)
- Volume: 27, Issue: 1, page 43-50
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topHuang, Shuliang. "Generalized reverse derivations and commutativity of prime rings." Communications in Mathematics 27.1 (2019): 43-50. <http://eudml.org/doc/294158>.
@article{Huang2019,
abstract = {Let $R$ be a prime ring with center $Z(R)$ and $I$ a nonzero right ideal of $R$. Suppose that $R$ admits a generalized reverse derivation $(F,d)$ such that $d(Z(R))\ne 0$. In the present paper, we shall prove that if one of the following conditions holds: (i) $F(xy)\pm xy\in Z(R)$, (ii) $F([x,y])\pm [F(x),y]\in Z(R)$, (iii) $F([x,y])\pm [F(x),F(y)]\in Z(R)$, (iv) $F(x\circ y)\pm F(x)\circ F(y)\in Z(R)$, (v) $[F(x),y]\pm [x,F(y)]\in Z(R)$, (vi) $F(x)\circ y\pm x\circ F(y)\in Z(R)$ for all $x,y \in I$, then $R$ is commutative.},
author = {Huang, Shuliang},
journal = {Communications in Mathematics},
keywords = {Prime rings; reverse derivations; generalized reverse derivations},
language = {eng},
number = {1},
pages = {43-50},
publisher = {University of Ostrava},
title = {Generalized reverse derivations and commutativity of prime rings},
url = {http://eudml.org/doc/294158},
volume = {27},
year = {2019},
}
TY - JOUR
AU - Huang, Shuliang
TI - Generalized reverse derivations and commutativity of prime rings
JO - Communications in Mathematics
PY - 2019
PB - University of Ostrava
VL - 27
IS - 1
SP - 43
EP - 50
AB - Let $R$ be a prime ring with center $Z(R)$ and $I$ a nonzero right ideal of $R$. Suppose that $R$ admits a generalized reverse derivation $(F,d)$ such that $d(Z(R))\ne 0$. In the present paper, we shall prove that if one of the following conditions holds: (i) $F(xy)\pm xy\in Z(R)$, (ii) $F([x,y])\pm [F(x),y]\in Z(R)$, (iii) $F([x,y])\pm [F(x),F(y)]\in Z(R)$, (iv) $F(x\circ y)\pm F(x)\circ F(y)\in Z(R)$, (v) $[F(x),y]\pm [x,F(y)]\in Z(R)$, (vi) $F(x)\circ y\pm x\circ F(y)\in Z(R)$ for all $x,y \in I$, then $R$ is commutative.
LA - eng
KW - Prime rings; reverse derivations; generalized reverse derivations
UR - http://eudml.org/doc/294158
ER -
References
top- Aboubakr, A., Gonzalez, S., 10.1134/S0037446615020019, Siberian Math. J., 56, 2, 2015, 199-205, (2015) MR3381237DOI10.1134/S0037446615020019
- Albas, E., On generalized derivations satisfying certain identities, Ukrainian Math. J., 63, 5, 2001, 699-698, (2001) MR3093034
- Ali, A., Kumar, D., Miyan, P., On generalized derivations and commutativity of prime and semiprime rings, Hacettepe J. Math. Statistics, 40, 3, 2011, 367-374, (2011) MR2857629
- Ali, A., Shah, T., Centralizing and commuting generalized derivations on prime rings, Matematiqki Vesnik, 60, 2008, 1-2, (2008) MR2403266
- Ashraf, M., Ali, A., Ali, S., Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math., 31, 2007, 415-421, (2007) MR2327138
- Ashraf, M., Rehman, N., Derivations and commutativity in prime rings, East-West J. Math., 3, 1, 2001, 87-91, (2001) MR1866647
- Ashraf, M., Rehman, N., Mozumder, M.R., On semiprime rings with generalized derivations, Bol. Soc. Paran. de Mat., 28, 2, 2010, 25-32, (2010) MR2727428
- Filippov, V.T., 10.1007/BF02674305, Siberian Math. J., 40, 1, 1999, 174-184, (1999) MR1686989DOI10.1007/BF02674305
- Herstein, I.N., Jordan derivations of prime rings, Proc. Amer. Math., Soc., 8, 1957, 1104-1110, (1957) MR0095864
- Hopkins, N.C., Generalized derivations of nonassociative algebras, Nova J. Math. Game Theory Algebra, 5, 3, 1996, 215-224, (1996) MR1455818
- Huang, S., Notes on commutativity of prime rings, Algebra and its Applications, 174, 2016, 75-80, (2016) MR3613783
- Ibraheem, A.M., Right ideal and generalized reverse derivations on prime rings, Amer. J. Comp. Appl. Math., 6, 4, 2016, 162-164, (2016)
- Mayne, J.H., 10.4153/CMB-1984-018-2, Canad. Math. Bull., 27, 1984, 122-126, (1984) Zbl0537.16029MR0725261DOI10.4153/CMB-1984-018-2
- Posner, E.C., Derivations in prime rings, Proc. Amer. Math. Soc., 8, 1957, 1093-1100, (1957) MR0095863
- Samman, M., Alyamani, N., 10.12988/imf.2007.07168, Int. J. Forum, 39, 2, 2007, 1895-1902, (2007) MR2341167DOI10.12988/imf.2007.07168
- Reddy, C.J. Subba, Hemavathi, K., Right reverse derivations on prime rings, Int. J. Res. Eng. Tec., 2, 3, 2014, 141-144, (2014)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.