Generalized reverse derivations and commutativity of prime rings

Shuliang Huang

Communications in Mathematics (2019)

  • Volume: 27, Issue: 1, page 43-50
  • ISSN: 1804-1388

Abstract

top
Let R be a prime ring with center Z ( R ) and I a nonzero right ideal of R . Suppose that R admits a generalized reverse derivation ( F , d ) such that d ( Z ( R ) ) 0 . In the present paper, we shall prove that if one of the following conditions holds: (i) F ( x y ) ± x y Z ( R ) , (ii) F ( [ x , y ] ) ± [ F ( x ) , y ] Z ( R ) , (iii) F ( [ x , y ] ) ± [ F ( x ) , F ( y ) ] Z ( R ) , (iv) F ( x y ) ± F ( x ) F ( y ) Z ( R ) , (v) [ F ( x ) , y ] ± [ x , F ( y ) ] Z ( R ) , (vi) F ( x ) y ± x F ( y ) Z ( R ) for all x , y I , then R is commutative.

How to cite

top

Huang, Shuliang. "Generalized reverse derivations and commutativity of prime rings." Communications in Mathematics 27.1 (2019): 43-50. <http://eudml.org/doc/294158>.

@article{Huang2019,
abstract = {Let $R$ be a prime ring with center $Z(R)$ and $I$ a nonzero right ideal of $R$. Suppose that $R$ admits a generalized reverse derivation $(F,d)$ such that $d(Z(R))\ne 0$. In the present paper, we shall prove that if one of the following conditions holds: (i) $F(xy)\pm xy\in Z(R)$, (ii) $F([x,y])\pm [F(x),y]\in Z(R)$, (iii) $F([x,y])\pm [F(x),F(y)]\in Z(R)$, (iv) $F(x\circ y)\pm F(x)\circ F(y)\in Z(R)$, (v) $[F(x),y]\pm [x,F(y)]\in Z(R)$, (vi) $F(x)\circ y\pm x\circ F(y)\in Z(R)$ for all $x,y \in I$, then $R$ is commutative.},
author = {Huang, Shuliang},
journal = {Communications in Mathematics},
keywords = {Prime rings; reverse derivations; generalized reverse derivations},
language = {eng},
number = {1},
pages = {43-50},
publisher = {University of Ostrava},
title = {Generalized reverse derivations and commutativity of prime rings},
url = {http://eudml.org/doc/294158},
volume = {27},
year = {2019},
}

TY - JOUR
AU - Huang, Shuliang
TI - Generalized reverse derivations and commutativity of prime rings
JO - Communications in Mathematics
PY - 2019
PB - University of Ostrava
VL - 27
IS - 1
SP - 43
EP - 50
AB - Let $R$ be a prime ring with center $Z(R)$ and $I$ a nonzero right ideal of $R$. Suppose that $R$ admits a generalized reverse derivation $(F,d)$ such that $d(Z(R))\ne 0$. In the present paper, we shall prove that if one of the following conditions holds: (i) $F(xy)\pm xy\in Z(R)$, (ii) $F([x,y])\pm [F(x),y]\in Z(R)$, (iii) $F([x,y])\pm [F(x),F(y)]\in Z(R)$, (iv) $F(x\circ y)\pm F(x)\circ F(y)\in Z(R)$, (v) $[F(x),y]\pm [x,F(y)]\in Z(R)$, (vi) $F(x)\circ y\pm x\circ F(y)\in Z(R)$ for all $x,y \in I$, then $R$ is commutative.
LA - eng
KW - Prime rings; reverse derivations; generalized reverse derivations
UR - http://eudml.org/doc/294158
ER -

References

top
  1. Aboubakr, A., Gonzalez, S., 10.1134/S0037446615020019, Siberian Math. J., 56, 2, 2015, 199-205, (2015) MR3381237DOI10.1134/S0037446615020019
  2. Albas, E., On generalized derivations satisfying certain identities, Ukrainian Math. J., 63, 5, 2001, 699-698, (2001) MR3093034
  3. Ali, A., Kumar, D., Miyan, P., On generalized derivations and commutativity of prime and semiprime rings, Hacettepe J. Math. Statistics, 40, 3, 2011, 367-374, (2011) MR2857629
  4. Ali, A., Shah, T., Centralizing and commuting generalized derivations on prime rings, Matematiqki Vesnik, 60, 2008, 1-2, (2008) MR2403266
  5. Ashraf, M., Ali, A., Ali, S., Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math., 31, 2007, 415-421, (2007) MR2327138
  6. Ashraf, M., Rehman, N., Derivations and commutativity in prime rings, East-West J. Math., 3, 1, 2001, 87-91, (2001) MR1866647
  7. Ashraf, M., Rehman, N., Mozumder, M.R., On semiprime rings with generalized derivations, Bol. Soc. Paran. de Mat., 28, 2, 2010, 25-32, (2010) MR2727428
  8. Filippov, V.T., 10.1007/BF02674305, Siberian Math. J., 40, 1, 1999, 174-184, (1999) MR1686989DOI10.1007/BF02674305
  9. Herstein, I.N., Jordan derivations of prime rings, Proc. Amer. Math., Soc., 8, 1957, 1104-1110, (1957) MR0095864
  10. Hopkins, N.C., Generalized derivations of nonassociative algebras, Nova J. Math. Game Theory Algebra, 5, 3, 1996, 215-224, (1996) MR1455818
  11. Huang, S., Notes on commutativity of prime rings, Algebra and its Applications, 174, 2016, 75-80, (2016) MR3613783
  12. Ibraheem, A.M., Right ideal and generalized reverse derivations on prime rings, Amer. J. Comp. Appl. Math., 6, 4, 2016, 162-164, (2016) 
  13. Mayne, J.H., 10.4153/CMB-1984-018-2, Canad. Math. Bull., 27, 1984, 122-126, (1984) Zbl0537.16029MR0725261DOI10.4153/CMB-1984-018-2
  14. Posner, E.C., Derivations in prime rings, Proc. Amer. Math. Soc., 8, 1957, 1093-1100, (1957) MR0095863
  15. Samman, M., Alyamani, N., 10.12988/imf.2007.07168, Int. J. Forum, 39, 2, 2007, 1895-1902, (2007) MR2341167DOI10.12988/imf.2007.07168
  16. Reddy, C.J. Subba, Hemavathi, K., Right reverse derivations on prime rings, Int. J. Res. Eng. Tec., 2, 3, 2014, 141-144, (2014) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.