On Kneser solutions of the -th order nonlinear differential inclusions
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 1, page 99-116
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPavlačková, Martina. "On Kneser solutions of the $n$-th order nonlinear differential inclusions." Czechoslovak Mathematical Journal 69.1 (2019): 99-116. <http://eudml.org/doc/294160>.
@article{Pavlačková2019,
abstract = {The paper deals with the existence of a Kneser solution of the $n$-th order nonlinear differential inclusion \begin\{eqnarray\} \{x\}^\{(n)\}(t)\in -A\_\{1\}(t,x(t),\ldots ,x^\{(n-1)\}(t))\{x\}^\{(n-1)\}(t)-\ldots -A\_\{n\}(t,x(t),\ldots ,&x^\{(n-1)\}(t))x(t)\nonumber \\ &\text\{for a.a.\} \ t\in [a,\infty ),\nonumber \end\{eqnarray\}
where $a\in (0,\infty )$, and $A_i\colon [a,\infty ) \times \mathbb \{R\}^\{n\}\rightarrow \mathbb \{R\}$, $i=1,\ldots ,n,$ are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.},
author = {Pavlačková, Martina},
journal = {Czechoslovak Mathematical Journal},
keywords = {asymptotic $n$-th order vector problems; $R_\{\delta \}$-set; inverse limit technique; Kneser problem},
language = {eng},
number = {1},
pages = {99-116},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Kneser solutions of the $n$-th order nonlinear differential inclusions},
url = {http://eudml.org/doc/294160},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Pavlačková, Martina
TI - On Kneser solutions of the $n$-th order nonlinear differential inclusions
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 99
EP - 116
AB - The paper deals with the existence of a Kneser solution of the $n$-th order nonlinear differential inclusion \begin{eqnarray} {x}^{(n)}(t)\in -A_{1}(t,x(t),\ldots ,x^{(n-1)}(t)){x}^{(n-1)}(t)-\ldots -A_{n}(t,x(t),\ldots ,&x^{(n-1)}(t))x(t)\nonumber \\ &\text{for a.a.} \ t\in [a,\infty ),\nonumber \end{eqnarray}
where $a\in (0,\infty )$, and $A_i\colon [a,\infty ) \times \mathbb {R}^{n}\rightarrow \mathbb {R}$, $i=1,\ldots ,n,$ are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.
LA - eng
KW - asymptotic $n$-th order vector problems; $R_{\delta }$-set; inverse limit technique; Kneser problem
UR - http://eudml.org/doc/294160
ER -
References
top- Agarwal, R. P., O'Regan, D., 10.1007/978-94-010-0718-4, Kluwer Academic Publishers, Dordrecht (2001). (2001) Zbl0988.34002MR1845855DOI10.1007/978-94-010-0718-4
- Andres, J., Gabor, G., Górniewicz, L., 10.4171/ZAA/937, Z. Anal. Anwend. 19 (2000), 35-60. (2000) Zbl0974.34045MR1748055DOI10.4171/ZAA/937
- Andres, J., Gabor, G., Górniewicz, L., 10.1016/S0362-546X(01)00131-6, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 49 (2002), 671-688. (2002) Zbl1012.34011MR1894303DOI10.1016/S0362-546X(01)00131-6
- Andres, J., Górniewicz, L., 10.1007/978-94-017-0407-6, Topological Fixed Point Theory and Its Applications 1, Kluwer Academic Publishers, Dordrecht (2003). (2003) Zbl1029.55002MR1998968DOI10.1007/978-94-017-0407-6
- Andres, J., Pavlačková, M., 10.1016/j.na.2008.12.013, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1462-1473. (2009) Zbl1182.34038MR2524361DOI10.1016/j.na.2008.12.013
- Andres, J., Pavlačková, M., 10.14232/ejqtde.2016.1.60, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 19 pages. (2016) Zbl06806157MR3547436DOI10.14232/ejqtde.2016.1.60
- Appell, J., Pascale, E. De, Thái, N. H., Multi-valued superpositions, Diss. Math. 345 (1995), 97 pages. (1995) Zbl0855.47037MR1354934
- Aubin, J.-P., Cellina, A., 10.1007/978-3-642-69512-4, Grundlehren der Mathematischen Wissenschaften 264, Springer, Berlin (1984). (1984) Zbl0538.34007MR0755330DOI10.1007/978-3-642-69512-4
- Bartušek, M., Cecchi, M., Marini, M., 10.1006/jmaa.2000.7473, J. Math. Anal. Appl. 261 (2001), 72-84. (2001) Zbl0995.34025MR1850957DOI10.1006/jmaa.2000.7473
- Bartušek, M., Došlá, Z., 10.1007/s10587-015-0176-3, Czech. Math. J. 65 (2015), 301-316. (2015) Zbl1363.34095MR3360427DOI10.1007/s10587-015-0176-3
- Borsuk, K., Theory of Retracts, Monografie Matematyczne 44, PWN, Warszawa (1967). (1967) Zbl0153.52905MR0216473
- Cecchi, M., Furi, M., Marini, M., About the solvability of ordinary differential equations with asymptotic boundary conditions, Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 4 (1985), 329-345. (1985) Zbl0587.34013MR0805224
- Fermi, E., Un metodo statistico per la determinazione di alcune prioriet á dell'atomo, Rend. R. Accad. Nat. Lincei 6 (1927), 602-607 Italian. (1927)
- Filippov, A. F., 10.1007/978-94-015-7793-9, Mathematics and Its Applications (Soviet Series) 18 Kluwer Academic Publishers, Dordrecht (1988). (1988) Zbl0664.34001MR1028776DOI10.1007/978-94-015-7793-9
- Gabor, G., 10.12775/TMNA.1999.036, Topol. Methods Nonlinear Anal. 14 (1999), 327-343. (1999) Zbl0954.54022MR1766183DOI10.12775/TMNA.1999.036
- Górniewicz, L., 10.1007/978-94-015-9195-9, Mathematics and Its Applications 495, Kluwer Academic Publishers, Dordrecht (1999). (1999) Zbl0937.55001MR1748378DOI10.1007/978-94-015-9195-9
- Graef, J. R., Henderson, J., Ouahab, A., 10.1515/9783110295313, De Gruyter Series in Nonlinear Analysis and Applications 20, De Gruyter, Berlin (2013). (2013) Zbl1285.34002MR3114179DOI10.1515/9783110295313
- Hartman, P., Wintner, A., 10.2307/2372184, Am. J. Math. 73 (1951), 390-404. (1951) Zbl0042.32601MR0042004DOI10.2307/2372184
- Kantorovich, L. V., Akilov, G. P., Functional Analysis in Normed Spaces, International Series of Monographs in Pure and Applied Mathematics 46, Pergamon Press, Oxford (1964). (1964) Zbl0127.06104MR0213845
- Kiguradze, I. T., Chanturia, T. A., 10.1007/978-94-011-1808-8, Mathematics and Its Applications (Soviet Series) 89, Kluwer Academic Publishers, Dordrecht (1993). (1993) Zbl0782.34002MR1220223DOI10.1007/978-94-011-1808-8
- Kiguradze, I. T., Shekhter, B. L., 10.1007/BF01100361, J. Soviet Math. 43 (1988), 2340-2417 English. Russian original translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 30 1987 105-201. (1988) Zbl0631.34021MR0925830DOI10.1007/BF01100361
- Kneser, A., Untersuchung und asymptotische Darstellung der Integrale gewisser Differentialgleichungen bei grossen reellen Werten des Arguments I, II, J. für Math. 116 (1896), 178-212 117 1896 72-103 German 9999JFM99999 27.0253.03. (1896) MR1580424
- Kozlov, V. A., 10.1007/BF02412217, Ark. Mat. 37 (1999), 305-322. (1999) Zbl1118.34317MR1714766DOI10.1007/BF02412217
- Kurzweil, J., Ordinary Differential Equations. Introduction to the Theory of Ordinary Differential Equations in the Real Domain, Studies in Applied Mechanics 13, Elsevier Scientific Publishing, Amsterdam; SNTL Publishers of Technical Literature, Praha (1986). (1986) Zbl0667.34002MR0929466
- O'Regan, D., Petruşel, A., Leray-Schauder, Lefschetz and Krasnoselskii fixed point theory in Fréchet spaces for general classes of Volterra operators, Fixed Point Theory 9 (2008), 497-513. (2008) Zbl1179.47049MR2464132
- Padhi, S., Pati, S., 10.1007/978-81-322-1614-8, Springer, New Delhi (2014). (2014) Zbl1308.34002MR3136420DOI10.1007/978-81-322-1614-8
- Partsvania, N., Sokhadze, Z., 10.1515/gmj-2016-0015, Georgian Math. J. 23 (2016), 269-277. (2016) Zbl1342.34091MR3507955DOI10.1515/gmj-2016-0015
- Thomas, L. H., 10.1017/S0305004100011683, Proceedings Cambridge 23 (1927), 542-548 9999JFM99999 53.0868.04. (1927) DOI10.1017/S0305004100011683
- Vrabie, I. I., Compactness Methods for Nonlinear Evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics 75, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1995). (1995) Zbl0842.47040MR1375237
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.