On Kneser solutions of the n -th order nonlinear differential inclusions

Martina Pavlačková

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 99-116
  • ISSN: 0011-4642

Abstract

top
The paper deals with the existence of a Kneser solution of the n -th order nonlinear differential inclusion x ( n ) ( t ) - A 1 ( t , x ( t ) , ... , x ( n - 1 ) ( t ) ) x ( n - 1 ) ( t ) - ... - A n ( t , x ( t ) , ... , x ( n - 1 ) ( t ) ) x ( t ) for a.a. t [ a , ) , where a ( 0 , ) , and A i : [ a , ) × n , i = 1 , ... , n , are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.

How to cite

top

Pavlačková, Martina. "On Kneser solutions of the $n$-th order nonlinear differential inclusions." Czechoslovak Mathematical Journal 69.1 (2019): 99-116. <http://eudml.org/doc/294160>.

@article{Pavlačková2019,
abstract = {The paper deals with the existence of a Kneser solution of the $n$-th order nonlinear differential inclusion \begin\{eqnarray\} \{x\}^\{(n)\}(t)\in -A\_\{1\}(t,x(t),\ldots ,x^\{(n-1)\}(t))\{x\}^\{(n-1)\}(t)-\ldots -A\_\{n\}(t,x(t),\ldots ,&x^\{(n-1)\}(t))x(t)\nonumber \\ &\text\{for a.a.\} \ t\in [a,\infty ),\nonumber \end\{eqnarray\} where $a\in (0,\infty )$, and $A_i\colon [a,\infty ) \times \mathbb \{R\}^\{n\}\rightarrow \mathbb \{R\}$, $i=1,\ldots ,n,$ are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.},
author = {Pavlačková, Martina},
journal = {Czechoslovak Mathematical Journal},
keywords = {asymptotic $n$-th order vector problems; $R_\{\delta \}$-set; inverse limit technique; Kneser problem},
language = {eng},
number = {1},
pages = {99-116},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Kneser solutions of the $n$-th order nonlinear differential inclusions},
url = {http://eudml.org/doc/294160},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Pavlačková, Martina
TI - On Kneser solutions of the $n$-th order nonlinear differential inclusions
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 99
EP - 116
AB - The paper deals with the existence of a Kneser solution of the $n$-th order nonlinear differential inclusion \begin{eqnarray} {x}^{(n)}(t)\in -A_{1}(t,x(t),\ldots ,x^{(n-1)}(t)){x}^{(n-1)}(t)-\ldots -A_{n}(t,x(t),\ldots ,&x^{(n-1)}(t))x(t)\nonumber \\ &\text{for a.a.} \ t\in [a,\infty ),\nonumber \end{eqnarray} where $a\in (0,\infty )$, and $A_i\colon [a,\infty ) \times \mathbb {R}^{n}\rightarrow \mathbb {R}$, $i=1,\ldots ,n,$ are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.
LA - eng
KW - asymptotic $n$-th order vector problems; $R_{\delta }$-set; inverse limit technique; Kneser problem
UR - http://eudml.org/doc/294160
ER -

References

top
  1. Agarwal, R. P., O'Regan, D., 10.1007/978-94-010-0718-4, Kluwer Academic Publishers, Dordrecht (2001). (2001) Zbl0988.34002MR1845855DOI10.1007/978-94-010-0718-4
  2. Andres, J., Gabor, G., Górniewicz, L., 10.4171/ZAA/937, Z. Anal. Anwend. 19 (2000), 35-60. (2000) Zbl0974.34045MR1748055DOI10.4171/ZAA/937
  3. Andres, J., Gabor, G., Górniewicz, L., 10.1016/S0362-546X(01)00131-6, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 49 (2002), 671-688. (2002) Zbl1012.34011MR1894303DOI10.1016/S0362-546X(01)00131-6
  4. Andres, J., Górniewicz, L., 10.1007/978-94-017-0407-6, Topological Fixed Point Theory and Its Applications 1, Kluwer Academic Publishers, Dordrecht (2003). (2003) Zbl1029.55002MR1998968DOI10.1007/978-94-017-0407-6
  5. Andres, J., Pavlačková, M., 10.1016/j.na.2008.12.013, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1462-1473. (2009) Zbl1182.34038MR2524361DOI10.1016/j.na.2008.12.013
  6. Andres, J., Pavlačková, M., 10.14232/ejqtde.2016.1.60, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 19 pages. (2016) Zbl06806157MR3547436DOI10.14232/ejqtde.2016.1.60
  7. Appell, J., Pascale, E. De, Thái, N. H., Multi-valued superpositions, Diss. Math. 345 (1995), 97 pages. (1995) Zbl0855.47037MR1354934
  8. Aubin, J.-P., Cellina, A., 10.1007/978-3-642-69512-4, Grundlehren der Mathematischen Wissenschaften 264, Springer, Berlin (1984). (1984) Zbl0538.34007MR0755330DOI10.1007/978-3-642-69512-4
  9. Bartušek, M., Cecchi, M., Marini, M., 10.1006/jmaa.2000.7473, J. Math. Anal. Appl. 261 (2001), 72-84. (2001) Zbl0995.34025MR1850957DOI10.1006/jmaa.2000.7473
  10. Bartušek, M., Došlá, Z., 10.1007/s10587-015-0176-3, Czech. Math. J. 65 (2015), 301-316. (2015) Zbl1363.34095MR3360427DOI10.1007/s10587-015-0176-3
  11. Borsuk, K., Theory of Retracts, Monografie Matematyczne 44, PWN, Warszawa (1967). (1967) Zbl0153.52905MR0216473
  12. Cecchi, M., Furi, M., Marini, M., About the solvability of ordinary differential equations with asymptotic boundary conditions, Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 4 (1985), 329-345. (1985) Zbl0587.34013MR0805224
  13. Fermi, E., Un metodo statistico per la determinazione di alcune prioriet á dell'atomo, Rend. R. Accad. Nat. Lincei 6 (1927), 602-607 Italian. (1927) 
  14. Filippov, A. F., 10.1007/978-94-015-7793-9, Mathematics and Its Applications (Soviet Series) 18 Kluwer Academic Publishers, Dordrecht (1988). (1988) Zbl0664.34001MR1028776DOI10.1007/978-94-015-7793-9
  15. Gabor, G., 10.12775/TMNA.1999.036, Topol. Methods Nonlinear Anal. 14 (1999), 327-343. (1999) Zbl0954.54022MR1766183DOI10.12775/TMNA.1999.036
  16. Górniewicz, L., 10.1007/978-94-015-9195-9, Mathematics and Its Applications 495, Kluwer Academic Publishers, Dordrecht (1999). (1999) Zbl0937.55001MR1748378DOI10.1007/978-94-015-9195-9
  17. Graef, J. R., Henderson, J., Ouahab, A., 10.1515/9783110295313, De Gruyter Series in Nonlinear Analysis and Applications 20, De Gruyter, Berlin (2013). (2013) Zbl1285.34002MR3114179DOI10.1515/9783110295313
  18. Hartman, P., Wintner, A., 10.2307/2372184, Am. J. Math. 73 (1951), 390-404. (1951) Zbl0042.32601MR0042004DOI10.2307/2372184
  19. Kantorovich, L. V., Akilov, G. P., Functional Analysis in Normed Spaces, International Series of Monographs in Pure and Applied Mathematics 46, Pergamon Press, Oxford (1964). (1964) Zbl0127.06104MR0213845
  20. Kiguradze, I. T., Chanturia, T. A., 10.1007/978-94-011-1808-8, Mathematics and Its Applications (Soviet Series) 89, Kluwer Academic Publishers, Dordrecht (1993). (1993) Zbl0782.34002MR1220223DOI10.1007/978-94-011-1808-8
  21. Kiguradze, I. T., Shekhter, B. L., 10.1007/BF01100361, J. Soviet Math. 43 (1988), 2340-2417 English. Russian original translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 30 1987 105-201. (1988) Zbl0631.34021MR0925830DOI10.1007/BF01100361
  22. Kneser, A., Untersuchung und asymptotische Darstellung der Integrale gewisser Differentialgleichungen bei grossen reellen Werten des Arguments I, II, J. für Math. 116 (1896), 178-212 117 1896 72-103 German 9999JFM99999 27.0253.03. (1896) MR1580424
  23. Kozlov, V. A., 10.1007/BF02412217, Ark. Mat. 37 (1999), 305-322. (1999) Zbl1118.34317MR1714766DOI10.1007/BF02412217
  24. Kurzweil, J., Ordinary Differential Equations. Introduction to the Theory of Ordinary Differential Equations in the Real Domain, Studies in Applied Mechanics 13, Elsevier Scientific Publishing, Amsterdam; SNTL Publishers of Technical Literature, Praha (1986). (1986) Zbl0667.34002MR0929466
  25. O'Regan, D., Petruşel, A., Leray-Schauder, Lefschetz and Krasnoselskii fixed point theory in Fréchet spaces for general classes of Volterra operators, Fixed Point Theory 9 (2008), 497-513. (2008) Zbl1179.47049MR2464132
  26. Padhi, S., Pati, S., 10.1007/978-81-322-1614-8, Springer, New Delhi (2014). (2014) Zbl1308.34002MR3136420DOI10.1007/978-81-322-1614-8
  27. Partsvania, N., Sokhadze, Z., 10.1515/gmj-2016-0015, Georgian Math. J. 23 (2016), 269-277. (2016) Zbl1342.34091MR3507955DOI10.1515/gmj-2016-0015
  28. Thomas, L. H., 10.1017/S0305004100011683, Proceedings Cambridge 23 (1927), 542-548 9999JFM99999 53.0868.04. (1927) DOI10.1017/S0305004100011683
  29. Vrabie, I. I., Compactness Methods for Nonlinear Evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics 75, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1995). (1995) Zbl0842.47040MR1375237

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.