Oscillation of third order differential equation with damping term

Miroslav Bartušek; Zuzana Došlá

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 2, page 301-316
  • ISSN: 0011-4642

Abstract

top
We study asymptotic and oscillatory properties of solutions to the third order differential equation with a damping term x ' ' ' ( t ) + q ( t ) x ' ( t ) + r ( t ) | x | λ ( t ) sgn x ( t ) = 0 , t 0 . We give conditions under which every solution of the equation above is either oscillatory or tends to zero. In case λ 1 and if the corresponding second order differential equation h ' ' + q ( t ) h = 0 is oscillatory, we also study Kneser solutions vanishing at infinity and the existence of oscillatory solutions.

How to cite

top

Bartušek, Miroslav, and Došlá, Zuzana. "Oscillation of third order differential equation with damping term." Czechoslovak Mathematical Journal 65.2 (2015): 301-316. <http://eudml.org/doc/270123>.

@article{Bartušek2015,
abstract = {We study asymptotic and oscillatory properties of solutions to the third order differential equation with a damping term \[ x^\{\prime \prime \prime \}(t)+q(t)x^\{\prime \}(t)+r(t)|x|^\{\lambda \}(t)\mathop \{\rm sgn\} x(t)=0 ,\quad t\ge 0. \] We give conditions under which every solution of the equation above is either oscillatory or tends to zero. In case $\lambda \le 1$ and if the corresponding second order differential equation $h^\{\prime \prime \}+q(t)h=0$ is oscillatory, we also study Kneser solutions vanishing at infinity and the existence of oscillatory solutions.},
author = {Bartušek, Miroslav, Došlá, Zuzana},
journal = {Czechoslovak Mathematical Journal},
keywords = {third order nonlinear differential equation; vanishing at infinity solution; Kneser solution; oscillatory solution},
language = {eng},
number = {2},
pages = {301-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation of third order differential equation with damping term},
url = {http://eudml.org/doc/270123},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Bartušek, Miroslav
AU - Došlá, Zuzana
TI - Oscillation of third order differential equation with damping term
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 301
EP - 316
AB - We study asymptotic and oscillatory properties of solutions to the third order differential equation with a damping term \[ x^{\prime \prime \prime }(t)+q(t)x^{\prime }(t)+r(t)|x|^{\lambda }(t)\mathop {\rm sgn} x(t)=0 ,\quad t\ge 0. \] We give conditions under which every solution of the equation above is either oscillatory or tends to zero. In case $\lambda \le 1$ and if the corresponding second order differential equation $h^{\prime \prime }+q(t)h=0$ is oscillatory, we also study Kneser solutions vanishing at infinity and the existence of oscillatory solutions.
LA - eng
KW - third order nonlinear differential equation; vanishing at infinity solution; Kneser solution; oscillatory solution
UR - http://eudml.org/doc/270123
ER -

References

top
  1. Agarwal, R. P., Baculíková, B., Džurina, J., Li, T., 10.1007/s10474-011-0120-4, Acta Math. Hung. 134 (2012), 54-67. (2012) MR2863808DOI10.1007/s10474-011-0120-4
  2. Agarwal, R. P., O'Regan, D., Infinite Interval Problems for Differential, Difference and Integral Equations, Kluwer Academic Publishers Dordrecht (2001). (2001) Zbl0988.34002MR1845855
  3. Astashova, I., On the asymptotic behavior at infinity of solutions to quasi-linear differential equations, Math. Bohem. 135 (2010), 373-382. (2010) Zbl1224.34098MR2681011
  4. Astashova, I. V., Uniform estimates for positive solutions of quasi-linear ordinary differential equations, Russian Izv. Ross. Akad. Nauk, Ser. Mat. 72 (2008), 85-104 translation in Izv. Math. 72 (2008), 1141-1160. (2008) Zbl1167.34010MR2489485
  5. Baculíková, B., Džurina, J., Rogovchenko, Y. V., 10.1016/j.amc.2011.12.049, Appl. Math. Comput. 218 (2012), 7023-7033. (2012) Zbl1252.34074MR2880290DOI10.1016/j.amc.2011.12.049
  6. Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., 10.1016/j.jmaa.2011.10.059, J. Math. Anal. Appl. 388 (2012), 1130-1140. (2012) Zbl1232.34051MR2869812DOI10.1016/j.jmaa.2011.10.059
  7. Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., Oscillation for third-order nonlinear differential equations with deviating argument, Abstr. Appl. Anal. 2010 (2010), Article ID 278962, 19 pages. (2010) Zbl1192.34073MR2587610
  8. Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., On nonoscillatory solutions of third order nonlinear differential equations, Dyn. Syst. Appl. 9 (2000), 483-499. (2000) MR1843694
  9. Bartušek, M., Cecchi, M., Marini, M., 10.1006/jmaa.2000.7473, J. Math. Anal. Appl. 261 (2001), 72-84. (2001) MR1850957DOI10.1006/jmaa.2000.7473
  10. Cecchi, M., Došlá, Z., Marini, M., 10.1006/jmaa.1998.6247, J. Math. Anal. Appl. 231 (1999), 509-525. (1999) MR1669163DOI10.1006/jmaa.1998.6247
  11. Cecchi, M., Došlá, Z., Marini, M., 10.1023/A:1022878804065, Czech. Math. J. 47 (1997), 729-748. (1997) Zbl0903.34032MR1479316DOI10.1023/A:1022878804065
  12. Elias, U., Oscillation Theory of Two-Term Differential Equations, Mathematics and Its Applications 396 Kluwer Academic Publishers, Dordrecht (1997). (1997) Zbl0878.34022MR1445292
  13. Greguš, M., Third Order Linear Differential Equations, Mathematics and Its Applications (East European Series) 22 Reidel Publishing Company, Dordrecht (1987). (1987) MR0882545
  14. Kiguradze, I. T., An oscillation criterion for a class of ordinary differential equations, Differ. Uravn. 28 (1992), 207-219 Russian translation in Differ. Equ. 28 (1992), 180-190. (1992) Zbl0768.34018MR1184921
  15. Kiguradze, I. T., Chanturiya, T. A., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Mathematics and Its Applications. Soviet Series 89 Kluwer Academic Publishers, Dordrecht (1993). (1993) Zbl0782.34002MR1220223
  16. Kusano, T., Švec, M., On unbounded positive solutions of nonlinear differential equations with oscillating coefficients, Czech. Math. J. 39 (1989), 133-141. (1989) Zbl0685.34011MR0983490
  17. Ohriska, J., Oscillatory and asymptotic properties of third and fourth order linear differential equations, Czech. Math. J. 39 (1989), 215-224. (1989) Zbl0688.34018MR0992128
  18. Padhi, S., Pati, S., Theory of Third-Order Differential Equations, Springer New Delhi (2014). (2014) Zbl1308.34002MR3136420
  19. Švec, M., Behavior of nonoscillatory solutions of some nonlinear differential equations, Acta Math. Univ. Comenianae 39 (1980), 115-130. (1980) Zbl0525.34029MR0619268
  20. Švec, M., Sur une propriété intégrales de l’équation y ( n ) + Q ( x ) y = 0 , n = 3 , 4 , Czech. Math. J. 7 (1957), 450-462 French. (1957) MR0095313
  21. Tiryaki, A., Aktaş, M. F., 10.1016/j.jmaa.2006.01.001, J. Math. Anal. Appl. 325 (2007), 54-68. (2007) Zbl1110.34048MR2273028DOI10.1016/j.jmaa.2006.01.001
  22. Villari, G., Contributi allo studio asintotico dell’equazione x ' ' ' ( t ) + p ( t ) x ( t ) = 0 , Italian Ann. Mat. Pura Appl., IV. Ser. 51 (1960), 301-328. (1960) Zbl0095.06903MR0121528

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.