Oscillation of third order differential equation with damping term
Miroslav Bartušek; Zuzana Došlá
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 301-316
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBartušek, Miroslav, and Došlá, Zuzana. "Oscillation of third order differential equation with damping term." Czechoslovak Mathematical Journal 65.2 (2015): 301-316. <http://eudml.org/doc/270123>.
@article{Bartušek2015,
abstract = {We study asymptotic and oscillatory properties of solutions to the third order differential equation with a damping term \[ x^\{\prime \prime \prime \}(t)+q(t)x^\{\prime \}(t)+r(t)|x|^\{\lambda \}(t)\mathop \{\rm sgn\} x(t)=0 ,\quad t\ge 0. \]
We give conditions under which every solution of the equation above is either oscillatory or tends to zero. In case $\lambda \le 1$ and if the corresponding second order differential equation $h^\{\prime \prime \}+q(t)h=0$ is oscillatory, we also study Kneser solutions vanishing at infinity and the existence of oscillatory solutions.},
author = {Bartušek, Miroslav, Došlá, Zuzana},
journal = {Czechoslovak Mathematical Journal},
keywords = {third order nonlinear differential equation; vanishing at infinity solution; Kneser solution; oscillatory solution},
language = {eng},
number = {2},
pages = {301-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation of third order differential equation with damping term},
url = {http://eudml.org/doc/270123},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Bartušek, Miroslav
AU - Došlá, Zuzana
TI - Oscillation of third order differential equation with damping term
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 301
EP - 316
AB - We study asymptotic and oscillatory properties of solutions to the third order differential equation with a damping term \[ x^{\prime \prime \prime }(t)+q(t)x^{\prime }(t)+r(t)|x|^{\lambda }(t)\mathop {\rm sgn} x(t)=0 ,\quad t\ge 0. \]
We give conditions under which every solution of the equation above is either oscillatory or tends to zero. In case $\lambda \le 1$ and if the corresponding second order differential equation $h^{\prime \prime }+q(t)h=0$ is oscillatory, we also study Kneser solutions vanishing at infinity and the existence of oscillatory solutions.
LA - eng
KW - third order nonlinear differential equation; vanishing at infinity solution; Kneser solution; oscillatory solution
UR - http://eudml.org/doc/270123
ER -
References
top- Agarwal, R. P., Baculíková, B., Džurina, J., Li, T., 10.1007/s10474-011-0120-4, Acta Math. Hung. 134 (2012), 54-67. (2012) MR2863808DOI10.1007/s10474-011-0120-4
- Agarwal, R. P., O'Regan, D., Infinite Interval Problems for Differential, Difference and Integral Equations, Kluwer Academic Publishers Dordrecht (2001). (2001) Zbl0988.34002MR1845855
- Astashova, I., On the asymptotic behavior at infinity of solutions to quasi-linear differential equations, Math. Bohem. 135 (2010), 373-382. (2010) Zbl1224.34098MR2681011
- Astashova, I. V., Uniform estimates for positive solutions of quasi-linear ordinary differential equations, Russian Izv. Ross. Akad. Nauk, Ser. Mat. 72 (2008), 85-104 translation in Izv. Math. 72 (2008), 1141-1160. (2008) Zbl1167.34010MR2489485
- Baculíková, B., Džurina, J., Rogovchenko, Y. V., 10.1016/j.amc.2011.12.049, Appl. Math. Comput. 218 (2012), 7023-7033. (2012) Zbl1252.34074MR2880290DOI10.1016/j.amc.2011.12.049
- Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., 10.1016/j.jmaa.2011.10.059, J. Math. Anal. Appl. 388 (2012), 1130-1140. (2012) Zbl1232.34051MR2869812DOI10.1016/j.jmaa.2011.10.059
- Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., Oscillation for third-order nonlinear differential equations with deviating argument, Abstr. Appl. Anal. 2010 (2010), Article ID 278962, 19 pages. (2010) Zbl1192.34073MR2587610
- Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., On nonoscillatory solutions of third order nonlinear differential equations, Dyn. Syst. Appl. 9 (2000), 483-499. (2000) MR1843694
- Bartušek, M., Cecchi, M., Marini, M., 10.1006/jmaa.2000.7473, J. Math. Anal. Appl. 261 (2001), 72-84. (2001) MR1850957DOI10.1006/jmaa.2000.7473
- Cecchi, M., Došlá, Z., Marini, M., 10.1006/jmaa.1998.6247, J. Math. Anal. Appl. 231 (1999), 509-525. (1999) MR1669163DOI10.1006/jmaa.1998.6247
- Cecchi, M., Došlá, Z., Marini, M., 10.1023/A:1022878804065, Czech. Math. J. 47 (1997), 729-748. (1997) Zbl0903.34032MR1479316DOI10.1023/A:1022878804065
- Elias, U., Oscillation Theory of Two-Term Differential Equations, Mathematics and Its Applications 396 Kluwer Academic Publishers, Dordrecht (1997). (1997) Zbl0878.34022MR1445292
- Greguš, M., Third Order Linear Differential Equations, Mathematics and Its Applications (East European Series) 22 Reidel Publishing Company, Dordrecht (1987). (1987) MR0882545
- Kiguradze, I. T., An oscillation criterion for a class of ordinary differential equations, Differ. Uravn. 28 (1992), 207-219 Russian translation in Differ. Equ. 28 (1992), 180-190. (1992) Zbl0768.34018MR1184921
- Kiguradze, I. T., Chanturiya, T. A., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Mathematics and Its Applications. Soviet Series 89 Kluwer Academic Publishers, Dordrecht (1993). (1993) Zbl0782.34002MR1220223
- Kusano, T., Švec, M., On unbounded positive solutions of nonlinear differential equations with oscillating coefficients, Czech. Math. J. 39 (1989), 133-141. (1989) Zbl0685.34011MR0983490
- Ohriska, J., Oscillatory and asymptotic properties of third and fourth order linear differential equations, Czech. Math. J. 39 (1989), 215-224. (1989) Zbl0688.34018MR0992128
- Padhi, S., Pati, S., Theory of Third-Order Differential Equations, Springer New Delhi (2014). (2014) Zbl1308.34002MR3136420
- Švec, M., Behavior of nonoscillatory solutions of some nonlinear differential equations, Acta Math. Univ. Comenianae 39 (1980), 115-130. (1980) Zbl0525.34029MR0619268
- Švec, M., Sur une propriété intégrales de l’équation , , Czech. Math. J. 7 (1957), 450-462 French. (1957) MR0095313
- Tiryaki, A., Aktaş, M. F., 10.1016/j.jmaa.2006.01.001, J. Math. Anal. Appl. 325 (2007), 54-68. (2007) Zbl1110.34048MR2273028DOI10.1016/j.jmaa.2006.01.001
- Villari, G., Contributi allo studio asintotico dell’equazione , Italian Ann. Mat. Pura Appl., IV. Ser. 51 (1960), 301-328. (1960) Zbl0095.06903MR0121528
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.