The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives
Gopalakrishna Hejmadi Gadiyar; Ramanathan Padma
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 4, page 1115-1124
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGadiyar, Gopalakrishna Hejmadi, and Padma, Ramanathan. "The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives." Czechoslovak Mathematical Journal 68.4 (2018): 1115-1124. <http://eudml.org/doc/294166>.
@article{Gadiyar2018,
abstract = {We connect the discrete logarithm problem over prime fields in the safe prime case to the logarithmic derivative.},
author = {Gadiyar, Gopalakrishna Hejmadi, Padma, Ramanathan},
journal = {Czechoslovak Mathematical Journal},
keywords = {discrete logarithm; Hensel lift; group extension},
language = {eng},
number = {4},
pages = {1115-1124},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives},
url = {http://eudml.org/doc/294166},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Gadiyar, Gopalakrishna Hejmadi
AU - Padma, Ramanathan
TI - The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1115
EP - 1124
AB - We connect the discrete logarithm problem over prime fields in the safe prime case to the logarithmic derivative.
LA - eng
KW - discrete logarithm; Hensel lift; group extension
UR - http://eudml.org/doc/294166
ER -
References
top- Bach, E., Discrete Logarithms and Factoring, University of California, Computer Science Division, Berkeley (1984). (1984)
- Buium, A., 10.1006/jabr.1997.7177, J. Algebra 198 (1997), 290-299. (1997) Zbl0892.13008MR1482984DOI10.1006/jabr.1997.7177
- Cameron, P. J., Preece, D. A., Primitive Lambda-Roots, Available at https://cameroncounts.files.wordpress.com/2014/01/plr1.pdf (2014). (2014)
- Carmichael, R. D., The Theory of Numbers, Wiley Sons, New York (1914),9999JFM99999 45.0283.10. (1914) MR0105381
- Diffie, W., Hellman, M. E., 10.1109/TIT.1976.1055638, IEEE Trans. Inf. Theory 22 (1976), 644-654. (1976) Zbl0435.94018MR0437208DOI10.1109/TIT.1976.1055638
- Goldwasser, S., 10.1109/SFCS.1997.646120, Proc. of the 38th Annual IEEE Symposium on Foundations of Computer Science, Foundations of Computer Science (1997), 314-324. (1997) DOI10.1109/SFCS.1997.646120
- Gadiyar, H. Gopalakrishna, Padma, R., The discrete logarithm problem over prime fields can be transformed to a linear multivariable Chinese remainder theorem, Available at ArXiv: 1608.07032v1 [math.NT] (2016). (2016) MR3881901
- Gadiyar, H. Gopalkrishna, Maini, K. M. S Sangeeta, Padma, R., 10.1007/978-3-540-30556-9_24, Progress in Cryptology---INDOCRYPT 2004, 5th International Conf. on Cryptology in India, Chennai, 2004, Lecture Notes in Comput. Sci. 3348 Springer, Berlin A. Canteaut et al. (2004), 305-314. (2004) Zbl1115.94008MR2147933DOI10.1007/978-3-540-30556-9_24
- Hilbert, D., 10.1007/978-3-662-03545-0, Springer, Berlin (1998). (1998) Zbl0984.11001MR1646901DOI10.1007/978-3-662-03545-0
- Kawada, Y., 10.2307/1969531, Ann. Math. (2) 54 (1951), 302-314. (1951) Zbl0044.26702MR0043830DOI10.2307/1969531
- Koblitz, N., 10.1007/978-1-4419-8592-7, Graduate Texts in Mathematics 114, Springer, New York (1994). (1994) Zbl0819.11001MR1302169DOI10.1007/978-1-4419-8592-7
- Kontsevich, M., 10.1023/A:1013757217319, Compositio Math. (2002), 130 161-210, 211-214. (2002) Zbl1062.11042MR1884238DOI10.1023/A:1013757217319
- Kumanduri, R., Romero, C., Number Theory with Computer Applications, Prentice Hall, Upper Saddle River (1998). (1998) Zbl0902.11001
- Lerch, M., 10.1007/BF01561092, Math. Ann. 60 (1905), 471-490 German 9999JFM99999 36.0266.03. (1905) MR1511321DOI10.1007/BF01561092
- McCurley, K. S., 10.1090/psapm/042/1095551, Cryptology and Computational Number Theory Lect. Notes AMS Short Course 1989, Proc. Symp. Appl. Math. 42 (1990), 49-74. (1990) Zbl0734.11073MR1095551DOI10.1090/psapm/042/1095551
- Riesel, H., 10.1007/BF01954904, BIT 28 (1988), 839-851. (1988) Zbl0665.10002MR0972809DOI10.1007/BF01954904
- Robert, A. M., 10.1007/978-1-4757-3254-2, Graduate Texts in Mathematics 198, Springer, New York (2000). (2000) Zbl0947.11035MR1760253DOI10.1007/978-1-4757-3254-2
- Satoh, T., Araki, K., Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, Comment. Math. Univ. St. Pauli 47 (1998), 81-92. (1998) Zbl1044.11592MR1624563
- Semaev, I. A., 10.1090/S0025-5718-98-00887-4, Math. Comput. 67 (1998), 353-356. (1998) Zbl1016.11021MR1432133DOI10.1090/S0025-5718-98-00887-4
- Silverman, J. H., 10.1007/978-3-642-04159-4_6, Selected Areas in Cryptography. Proc. of 15th International Workshop on Selected Areas in Cryptography, Sackville, 2008, Lecture Notes in Computer Science 5381 Springer, Berlin R. M. Avanzi et al. (2009), 82-102. (2009) Zbl1256.94065MR2054769DOI10.1007/978-3-642-04159-4_6
- Smart, N. P., 10.1007/s001459900052, J. Cryptology 12 (1999), 193-196. (1999) Zbl0963.11068MR1698180DOI10.1007/s001459900052
- Teichmüller, O., 10.1515/crll.1937.176.141, J. Reine Angew. Math. 176 (1936), 141-152 German. (1936) Zbl0016.05103MR1581527DOI10.1515/crll.1937.176.141
- Teichmüller, O., Über die Struktur diskret bewerteter perfekter Körper, Nachr. Ges. Wiss. Göttingen, math.-phys. Kl., FG 1, Neue Folge 1 (1936), 151-161 German 9999JFM99999 62.0110.01. (1936)
- Washington, L. C., 10.1007/978-1-4612-1934-7, Graduate Texts in Mathematics 83, Springer, New York (1997). (1997) Zbl0966.11047MR1421575DOI10.1007/978-1-4612-1934-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.