The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives

Gopalakrishna Hejmadi Gadiyar; Ramanathan Padma

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 4, page 1115-1124
  • ISSN: 0011-4642

Abstract

top
We connect the discrete logarithm problem over prime fields in the safe prime case to the logarithmic derivative.

How to cite

top

Gadiyar, Gopalakrishna Hejmadi, and Padma, Ramanathan. "The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives." Czechoslovak Mathematical Journal 68.4 (2018): 1115-1124. <http://eudml.org/doc/294166>.

@article{Gadiyar2018,
abstract = {We connect the discrete logarithm problem over prime fields in the safe prime case to the logarithmic derivative.},
author = {Gadiyar, Gopalakrishna Hejmadi, Padma, Ramanathan},
journal = {Czechoslovak Mathematical Journal},
keywords = {discrete logarithm; Hensel lift; group extension},
language = {eng},
number = {4},
pages = {1115-1124},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives},
url = {http://eudml.org/doc/294166},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Gadiyar, Gopalakrishna Hejmadi
AU - Padma, Ramanathan
TI - The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1115
EP - 1124
AB - We connect the discrete logarithm problem over prime fields in the safe prime case to the logarithmic derivative.
LA - eng
KW - discrete logarithm; Hensel lift; group extension
UR - http://eudml.org/doc/294166
ER -

References

top
  1. Bach, E., Discrete Logarithms and Factoring, University of California, Computer Science Division, Berkeley (1984). (1984) 
  2. Buium, A., 10.1006/jabr.1997.7177, J. Algebra 198 (1997), 290-299. (1997) Zbl0892.13008MR1482984DOI10.1006/jabr.1997.7177
  3. Cameron, P. J., Preece, D. A., Primitive Lambda-Roots, Available at https://cameroncounts.files.wordpress.com/2014/01/plr1.pdf (2014). (2014) 
  4. Carmichael, R. D., The Theory of Numbers, Wiley Sons, New York (1914),9999JFM99999 45.0283.10. (1914) MR0105381
  5. Diffie, W., Hellman, M. E., 10.1109/TIT.1976.1055638, IEEE Trans. Inf. Theory 22 (1976), 644-654. (1976) Zbl0435.94018MR0437208DOI10.1109/TIT.1976.1055638
  6. Goldwasser, S., 10.1109/SFCS.1997.646120, Proc. of the 38th Annual IEEE Symposium on Foundations of Computer Science, Foundations of Computer Science (1997), 314-324. (1997) DOI10.1109/SFCS.1997.646120
  7. Gadiyar, H. Gopalakrishna, Padma, R., The discrete logarithm problem over prime fields can be transformed to a linear multivariable Chinese remainder theorem, Available at ArXiv: 1608.07032v1 [math.NT] (2016). (2016) MR3881901
  8. Gadiyar, H. Gopalkrishna, Maini, K. M. S Sangeeta, Padma, R., 10.1007/978-3-540-30556-9_24, Progress in Cryptology---INDOCRYPT 2004, 5th International Conf. on Cryptology in India, Chennai, 2004, Lecture Notes in Comput. Sci. 3348 Springer, Berlin A. Canteaut et al. (2004), 305-314. (2004) Zbl1115.94008MR2147933DOI10.1007/978-3-540-30556-9_24
  9. Hilbert, D., 10.1007/978-3-662-03545-0, Springer, Berlin (1998). (1998) Zbl0984.11001MR1646901DOI10.1007/978-3-662-03545-0
  10. Kawada, Y., 10.2307/1969531, Ann. Math. (2) 54 (1951), 302-314. (1951) Zbl0044.26702MR0043830DOI10.2307/1969531
  11. Koblitz, N., 10.1007/978-1-4419-8592-7, Graduate Texts in Mathematics 114, Springer, New York (1994). (1994) Zbl0819.11001MR1302169DOI10.1007/978-1-4419-8592-7
  12. Kontsevich, M., 10.1023/A:1013757217319, Compositio Math. (2002), 130 161-210, 211-214. (2002) Zbl1062.11042MR1884238DOI10.1023/A:1013757217319
  13. Kumanduri, R., Romero, C., Number Theory with Computer Applications, Prentice Hall, Upper Saddle River (1998). (1998) Zbl0902.11001
  14. Lerch, M., 10.1007/BF01561092, Math. Ann. 60 (1905), 471-490 German 9999JFM99999 36.0266.03. (1905) MR1511321DOI10.1007/BF01561092
  15. McCurley, K. S., 10.1090/psapm/042/1095551, Cryptology and Computational Number Theory Lect. Notes AMS Short Course 1989, Proc. Symp. Appl. Math. 42 (1990), 49-74. (1990) Zbl0734.11073MR1095551DOI10.1090/psapm/042/1095551
  16. Riesel, H., 10.1007/BF01954904, BIT 28 (1988), 839-851. (1988) Zbl0665.10002MR0972809DOI10.1007/BF01954904
  17. Robert, A. M., 10.1007/978-1-4757-3254-2, Graduate Texts in Mathematics 198, Springer, New York (2000). (2000) Zbl0947.11035MR1760253DOI10.1007/978-1-4757-3254-2
  18. Satoh, T., Araki, K., Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, Comment. Math. Univ. St. Pauli 47 (1998), 81-92. (1998) Zbl1044.11592MR1624563
  19. Semaev, I. A., 10.1090/S0025-5718-98-00887-4, Math. Comput. 67 (1998), 353-356. (1998) Zbl1016.11021MR1432133DOI10.1090/S0025-5718-98-00887-4
  20. Silverman, J. H., 10.1007/978-3-642-04159-4_6, Selected Areas in Cryptography. Proc. of 15th International Workshop on Selected Areas in Cryptography, Sackville, 2008, Lecture Notes in Computer Science 5381 Springer, Berlin R. M. Avanzi et al. (2009), 82-102. (2009) Zbl1256.94065MR2054769DOI10.1007/978-3-642-04159-4_6
  21. Smart, N. P., 10.1007/s001459900052, J. Cryptology 12 (1999), 193-196. (1999) Zbl0963.11068MR1698180DOI10.1007/s001459900052
  22. Teichmüller, O., 10.1515/crll.1937.176.141, J. Reine Angew. Math. 176 (1936), 141-152 German. (1936) Zbl0016.05103MR1581527DOI10.1515/crll.1937.176.141
  23. Teichmüller, O., Über die Struktur diskret bewerteter perfekter Körper, Nachr. Ges. Wiss. Göttingen, math.-phys. Kl., FG 1, Neue Folge 1 (1936), 151-161 German 9999JFM99999 62.0110.01. (1936) 
  24. Washington, L. C., 10.1007/978-1-4612-1934-7, Graduate Texts in Mathematics 83, Springer, New York (1997). (1997) Zbl0966.11047MR1421575DOI10.1007/978-1-4612-1934-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.