A weak comparison principle for some quasilinear elliptic operators: it compares functions belonging to different spaces
Applications of Mathematics (2018)
- Volume: 63, Issue: 4, page 483-498
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topUnai, Akihito. "A weak comparison principle for some quasilinear elliptic operators: it compares functions belonging to different spaces." Applications of Mathematics 63.4 (2018): 483-498. <http://eudml.org/doc/294168>.
@article{Unai2018,
abstract = {We shall prove a weak comparison principle for quasilinear elliptic operators $-\{\rm div\}(a(x,\nabla u))$ that includes the negative $p$-Laplace operator, where $a\colon \Omega \times \mathbb \{R\}^N \rightarrow \mathbb \{R\}^N$ satisfies certain conditions frequently seen in the research of quasilinear elliptic operators. In our result, it is characteristic that functions which are compared belong to different spaces.},
author = {Unai, Akihito},
journal = {Applications of Mathematics},
keywords = {weak comparison principle; quasilinear elliptic operator; $p$-Laplace operator},
language = {eng},
number = {4},
pages = {483-498},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A weak comparison principle for some quasilinear elliptic operators: it compares functions belonging to different spaces},
url = {http://eudml.org/doc/294168},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Unai, Akihito
TI - A weak comparison principle for some quasilinear elliptic operators: it compares functions belonging to different spaces
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 483
EP - 498
AB - We shall prove a weak comparison principle for quasilinear elliptic operators $-{\rm div}(a(x,\nabla u))$ that includes the negative $p$-Laplace operator, where $a\colon \Omega \times \mathbb {R}^N \rightarrow \mathbb {R}^N$ satisfies certain conditions frequently seen in the research of quasilinear elliptic operators. In our result, it is characteristic that functions which are compared belong to different spaces.
LA - eng
KW - weak comparison principle; quasilinear elliptic operator; $p$-Laplace operator
UR - http://eudml.org/doc/294168
ER -
References
top- Boccardo, L., Croce, G., 10.1515/9783110315424, De Gruyter Studies in Mathematics 55, De Gruyter, Berlin (2013). (2013) Zbl1293.35001MR3154599DOI10.1515/9783110315424
- Brezis, H., 10.1007/978-0-387-70914-7, Universitext, Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
- Chipot, M., 10.1007/978-3-7643-9982-5, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, Basel (2009). (2009) Zbl1171.35003MR2494977DOI10.1007/978-3-7643-9982-5
- Damascelli, L., 10.1016/S0294-1449(98)80032-2, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998), 493-516. (1998) Zbl0911.35009MR1632933DOI10.1016/S0294-1449(98)80032-2
- D'Ambrosio, L., Farina, A., Mitidieri, E., Serrin, J., 10.1016/j.na.2013.06.004, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 90 (2013), 135-158. (2013) Zbl1287.35033MR3073634DOI10.1016/j.na.2013.06.004
- D'Ambrosio, L., Mitidieri, E., A priori estimates and reduction principles for quasilinear elliptic problems and applications, Adv. Differ. Equ. 17 (2012), 935-1000. (2012) Zbl1273.35138MR2985680
- Mitrović, D., Žubrinić, D., Fundamentals of Applied Functional Analysis. Distributions---Sobolev Spaces---Nonlinear Elliptic Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics 91, Longman, Harlow (1998). (1998) Zbl0901.46001MR1603811
- Motreanu, D., Motreanu, V. V., Papageorgiou, N., 10.1007/978-1-4614-9323-5, Springer, New York (2014). (2014) Zbl1292.47001MR3136201DOI10.1007/978-1-4614-9323-5
- Tolksdorf, P., 10.1080/03605308308820285, Commun. Partial Differ. Equations 8 (1983), 773-817. (1983) Zbl0515.35024MR0700735DOI10.1080/03605308308820285
- Unai, A., 10.17654/MS099060851, Far East J. Math. Sci. (FJMS) 99 (2016), 851-867. (2016) Zbl06627771MR3842964DOI10.17654/MS099060851
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.