Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays
Kybernetika (2018)
- Volume: 54, Issue: 4, page 718-735
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHu, Guang-Da. "Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays." Kybernetika 54.4 (2018): 718-735. <http://eudml.org/doc/294173>.
@article{Hu2018,
abstract = {In this paper, we are concerned with stability of numerical methods for linear neutral systems with multiple delays. Delay-dependent stability of Runge-Kutta methods is investigated, i. e., for delay-dependently stable systems, we ask what conditions must be imposed on the Runge-Kutta methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. By means of Lagrange interpolation, Runge-Kutta methods can be applied to neutral differential systems with multiple delays. Based on the argument principle, sufficient conditions for delay-dependent stability of Runge-Kutta methods combined with Lagrange interpolation are presented. Numerical examples are given to illustrate the main results.},
author = {Hu, Guang-Da},
journal = {Kybernetika},
keywords = {neutral differential systems with multiple delays; delay-dependent stability; Runge–Kutta method; Lagrange interpolation; argument principle},
language = {eng},
number = {4},
pages = {718-735},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays},
url = {http://eudml.org/doc/294173},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Hu, Guang-Da
TI - Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 718
EP - 735
AB - In this paper, we are concerned with stability of numerical methods for linear neutral systems with multiple delays. Delay-dependent stability of Runge-Kutta methods is investigated, i. e., for delay-dependently stable systems, we ask what conditions must be imposed on the Runge-Kutta methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. By means of Lagrange interpolation, Runge-Kutta methods can be applied to neutral differential systems with multiple delays. Based on the argument principle, sufficient conditions for delay-dependent stability of Runge-Kutta methods combined with Lagrange interpolation are presented. Numerical examples are given to illustrate the main results.
LA - eng
KW - neutral differential systems with multiple delays; delay-dependent stability; Runge–Kutta method; Lagrange interpolation; argument principle
UR - http://eudml.org/doc/294173
ER -
References
top- Bellen, A., Zennaro, M., 10.1093/acprof:oso/9780198506546.001.0001, Oxford University Press, Oxford 2003. MR1997488DOI10.1093/acprof:oso/9780198506546.001.0001
- Brown, J. W., Churchill, R. V., Complex Variables and Applications., McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004. MR0112948
- Hale, J. K., Lunel, S. M. Verduyn, 10.1093/imamci/19.1_and_2.5, IMA J. Math. Control Info. 19 (2002), 5-23. MR1899001DOI10.1093/imamci/19.1_and_2.5
- Hu, G. D., Stability criteria of linear neutral systems with distributed delays., Kybernetika 47 (2011), 273-284. MR2828577
- Hu, G. D., Cahlon, B., 10.1016/s0377-0427(98)00215-5, J. Comput. Appl. Math. 102 (1999), 221-234. MR1674027DOI10.1016/s0377-0427(98)00215-5
- Hu, G. D., Hu, G. D., Zou, X., 10.1016/s0096-3003(02)00929-3, Appl. Math. Comput. 148 (2004), 707-715. MR2024535DOI10.1016/s0096-3003(02)00929-3
- Huang, C., Vandewalle, S., 10.1137/s1064827502409717, SIAM J. Scientific Computing 25 (2004), 1608-1632. MR2087328DOI10.1137/s1064827502409717
- Johnson, L. W., Riess, R. Dean, Arnold, J. T., Introduction to Linear Algebra., Prentice-Hall, Englewood Cliffs 2000.
- Jury, E. I., Theory and Application of -Transform Method., John Wiley and Sons, New York 1964.
- Kim, A. V., Ivanov, A. V., 10.1002/9781119117841, Scrivener Publishing LLC, Salem, Massachusetts 2015. MR3496968DOI10.1002/9781119117841
- Kolmanovskii, V. B., Myshkis, A., 10.1007/978-94-017-1965-0, Kluwer Academic Publishers, Dordrecht 1999. MR1680144DOI10.1007/978-94-017-1965-0
- Lambert, J. D., Numerical Methods for Ordinary Differential Systems., John Wiley and Sons, New York 1999. MR1127425
- Lancaster, P., Tismenetsky, M., The Theory of Matrices with Applications., Academic Press, Orlando 1985. MR0792300
- Michiels, W., Niculescu, S., 10.1137/1.9781611973631, SIAM, Philadelphia 2014. MR3288751DOI10.1137/1.9781611973631
- Tian, H., Kuang, J., 10.1016/0377-0427(93)e0269-r, J. Comput. Appl. Math. 58 (1995), 171-181. MR1343634DOI10.1016/0377-0427(93)e0269-r
- Vyhlidal, T., Zitek, P., 10.1109/tac.2009.2029301, IEEE Trans. Automat. Control 54 (2009), 2430-2435. MR2562848DOI10.1109/tac.2009.2029301
- Wang, W., 10.1016/j.matcom.2013.08.004, Math. Comput. Simul. 97 (2014), 147-161. MR3137913DOI10.1016/j.matcom.2013.08.004
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.