Delay-dependent stability of linear multi-step methods for linear neutral systems
Kybernetika (2020)
- Volume: 56, Issue: 3, page 543-558
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHu, Guang-Da, and Shao, Lizhen. "Delay-dependent stability of linear multi-step methods for linear neutral systems." Kybernetika 56.3 (2020): 543-558. <http://eudml.org/doc/297210>.
@article{Hu2020,
abstract = {In this paper, we are concerned with numerical methods for linear neutral systems with multiple delays. For delay-dependently stable neutral systems, we ask what conditions must be imposed on linear multi-step methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. Combining with Lagrange interpolation, linear multi-step methods can be applied to the neutral systems. Utilizing the argument principle, a sufficient condition is derived for linear multi-step methods with preserving delay-dependent stability. Numerical examples are given to illustrate the main results.},
author = {Hu, Guang-Da, Shao, Lizhen},
journal = {Kybernetika},
keywords = {neutral systems with multiple delays; delay-dependent stability; linear multi-step method; Lagrange interpolation; argument principle},
language = {eng},
number = {3},
pages = {543-558},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Delay-dependent stability of linear multi-step methods for linear neutral systems},
url = {http://eudml.org/doc/297210},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Hu, Guang-Da
AU - Shao, Lizhen
TI - Delay-dependent stability of linear multi-step methods for linear neutral systems
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 543
EP - 558
AB - In this paper, we are concerned with numerical methods for linear neutral systems with multiple delays. For delay-dependently stable neutral systems, we ask what conditions must be imposed on linear multi-step methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. Combining with Lagrange interpolation, linear multi-step methods can be applied to the neutral systems. Utilizing the argument principle, a sufficient condition is derived for linear multi-step methods with preserving delay-dependent stability. Numerical examples are given to illustrate the main results.
LA - eng
KW - neutral systems with multiple delays; delay-dependent stability; linear multi-step method; Lagrange interpolation; argument principle
UR - http://eudml.org/doc/297210
ER -
References
top- Aleksandrov, A. Y., Hu, G. D., Zhabko, A. P., 10.1109/tac.2014.2299012, IEEE Trans. Automat. Control 59 (2014), 2209-2214. MR3245263DOI10.1109/tac.2014.2299012
- Bellen, A., Zennaro, M., 10.1093/acprof:oso/9780198506546.001.0001, Oxford University Press, Oxford 2003. MR1997488DOI10.1093/acprof:oso/9780198506546.001.0001
- Brown, J. W., Churchill, R. V., Complex Variables and Applications., McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004. MR0112948
- Fridman, E., 10.1007/978-3-319-09393-2, Birkhäuser, New York 2014. MR3237720DOI10.1007/978-3-319-09393-2
- Hale, J. K., Lunel, S. M. Verduyn, 10.1093/imamci/19.1_and_2.5, IMA J. Math. Control Inform. 19 (2002), 5-23. MR1899001DOI10.1093/imamci/19.1_and_2.5
- Han, Q. L., 10.1093/imamci/20.4.371, IMA J. Math. Control Inform. 20 (2003), 371-386. MR2028146DOI10.1093/imamci/20.4.371
- Hu, G. D., 10.14736/kyb-2018-4-0718, Kybernetika 54 (2018), 718-735. MR3863252DOI10.14736/kyb-2018-4-0718
- Hu, G. D., Cahlon, B., 10.1016/s0377-0427(98)00215-5, J. Compt. Appl. Math. 102 (1999), 221-234. MR1674027DOI10.1016/s0377-0427(98)00215-5
- Hu, G. D., Liu, M., 10.1109/tac.2007.894539, IEEE Trans. Automat. Control 52 (2007), 720-724. MR2310053DOI10.1109/tac.2007.894539
- Huang, C., Vandewalle, S., 10.1137/s1064827502409717, SIAM J. Scientific Computing 25 (2004), 1608-1632. MR2087328DOI10.1137/s1064827502409717
- Johnson, L. W., Riess, R. Dean, Arnold, J. T., Introduction to Linear Algebra., Prentice-Hall, Englewood Cliffs 2000.
- Jury, E. I., Theory and Application of -Transform Method., John Wiley and Sons, New York 1964.
- Kim, A. V., Ivanov, A. V., 10.1016/s0378-4754(97)00117-1, Math. Comput. Simul. 45 (1998), 377-384. MR1622949DOI10.1016/s0378-4754(97)00117-1
- Kolmanovskii, V. B., Myshkis, A., 10.1007/978-94-017-1965-0, Kluwer Academic Publishers, Dordrecht 1999. MR1680144DOI10.1007/978-94-017-1965-0
- Lambert, J. D., Numerical Methods for Ordinary Differential Systems., John Wiley and Sons, New York 1999. MR1127425
- Lancaster, P., Tismenetsky, M., The Theory of Matrices with Applications., Academic Press, Orlando 1985. MR0792300
- Maset, S., 10.1007/s002110100266, Numer. Math. 90 (2002), 555-562. MR1884230DOI10.1007/s002110100266
- Medvedeva, I. V., Zhabko, A. P., 10.1016/j.automatica.2014.10.074, Automatica 51 (2015), 372-377. MR3284791DOI10.1016/j.automatica.2014.10.074
- Tian, H., Kuang, J., 10.1016/0377-0427(93)e0269-r, J. Comput. Appl. Math. 58 (1995), 171-181. MR1343634DOI10.1016/0377-0427(93)e0269-r
- Vyhlidal, T., Zitek, P., 10.1109/tac.2009.2029301, IEEE Trans. Automat. Control 54 (2009), 2430-2435. MR2562848DOI10.1109/tac.2009.2029301
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.