Algebraic preconditioning for Biot-Barenblatt poroelastic systems
Applications of Mathematics (2017)
- Volume: 62, Issue: 6, page 561-577
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBlaheta, Radim, and Luber, Tomáš. "Algebraic preconditioning for Biot-Barenblatt poroelastic systems." Applications of Mathematics 62.6 (2017): 561-577. <http://eudml.org/doc/294179>.
@article{Blaheta2017,
abstract = {Poroelastic systems describe fluid flow through porous medium coupled with deformation of the porous matrix. In this paper, the deformation is described by linear elasticity, the fluid flow is modelled as Darcy flow. The main focus is on the Biot-Barenblatt model with double porosity/double permeability flow, which distinguishes flow in two regions considered as continua. The main goal is in proposing block diagonal preconditionings to systems arising from the discretization of the Biot-Barenblatt model by a mixed finite element method in space and implicit Euler method in time and estimating the condition number for such preconditioning. The investigation of preconditioning includes its dependence on material coefficients and parameters of discretization.},
author = {Blaheta, Radim, Luber, Tomáš},
journal = {Applications of Mathematics},
keywords = {poroelasticity; double permeability; preconditioning; Schur complement},
language = {eng},
number = {6},
pages = {561-577},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Algebraic preconditioning for Biot-Barenblatt poroelastic systems},
url = {http://eudml.org/doc/294179},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Blaheta, Radim
AU - Luber, Tomáš
TI - Algebraic preconditioning for Biot-Barenblatt poroelastic systems
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 6
SP - 561
EP - 577
AB - Poroelastic systems describe fluid flow through porous medium coupled with deformation of the porous matrix. In this paper, the deformation is described by linear elasticity, the fluid flow is modelled as Darcy flow. The main focus is on the Biot-Barenblatt model with double porosity/double permeability flow, which distinguishes flow in two regions considered as continua. The main goal is in proposing block diagonal preconditionings to systems arising from the discretization of the Biot-Barenblatt model by a mixed finite element method in space and implicit Euler method in time and estimating the condition number for such preconditioning. The investigation of preconditioning includes its dependence on material coefficients and parameters of discretization.
LA - eng
KW - poroelasticity; double permeability; preconditioning; Schur complement
UR - http://eudml.org/doc/294179
ER -
References
top- Arnold, D. N., Falk, R. S., Winther, R., 10.1090/S0025-5718-97-00826-0, Math. Comput. 66 (1997), 957-984. (1997) Zbl0870.65112MR1401938DOI10.1090/S0025-5718-97-00826-0
- Axelsson, O., Blaheta, R., 10.1002/nla.728, Numer. Linear Algebra Appl. 17 (2010), 787-810. (2010) Zbl1240.65090MR2722647DOI10.1002/nla.728
- Axelsson, O., Blaheta, R., Byczanski, P., 10.1007/s00791-013-0209-0, Comput. Visual Sci. 15 (2012), 191-207. (2012) MR3148142DOI10.1007/s00791-013-0209-0
- Axelsson, O., Blaheta, R., Luber, T., Preconditioners for mixed FEM solution of stationary and nonstationary porous media flow problems, Large-Scale Scientific Computing Int. Conf. Lecture Notes in Comput. Sci. 9374, Springer, Cham (2015), 3-14 9999DOI99999 10.1007/978-3-319-26520-9 1. (2015) MR3480807
- Bai, M., Elsworth, D., Roegiers, J.-C., 10.1029/92wr02746, Water Resources Research 29 (1993), 1621-1633. (1993) DOI10.1029/92wr02746
- Barenblatt, G. I., Zheltov, I. P., Kochina, I. N., 10.1016/0021-8928(60)90107-6, PMM, J. Appl. Math. Mech. 24 1286-1303 (1961), English. Russian original translation from Prikl. Mat. Mekh. 24 852-864 1960. (1961) Zbl0104.21702DOI10.1016/0021-8928(60)90107-6
- Benzi, M., Golub, G. H., Liesen, J., 10.1017/S0962492904000212, Acta Numerica 14 (2005), 1-137. (2005) Zbl1115.65034MR2168342DOI10.1017/S0962492904000212
- Boffi, D., Brezzi, F., Fortin, M., 10.1007/978-3-642-36519-5, Springer Series in Computational Mathematics 44, Springer, Berlin (2013). (2013) Zbl1277.65092MR3097958DOI10.1007/978-3-642-36519-5
- project, Decovalex 2019, G, Task, EDZ evolution in sparsely fractured competent rock, http://decovalex.org/task-g.html.
- Elman, H. C., Silvester, D. J., Wathen, A. J., 10.1093/acprof:oso/9780199678792.001.0001, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2014). (2014) Zbl1304.76002MR3235759DOI10.1093/acprof:oso/9780199678792.001.0001
- Gerke, H. H., Genuchten, M. T. Van, 10.1029/92wr02339, Water Resources Research 29 (1993), 305-319. (1993) DOI10.1029/92wr02339
- Halmos, P. R., 10.1007/978-1-4612-6387-6, The University Series in Undergraduate Mathematics, D. van Nostrand Company, Princeton (1958). (1958) Zbl0107.01404MR0089819DOI10.1007/978-1-4612-6387-6
- Henson, V. E., Yang, U. M., 10.1016/S0168-9274(01)00115-5, Appl. Numer. Math. 41 (2002), 155-177. (2002) Zbl0995.65128MR1908755DOI10.1016/S0168-9274(01)00115-5
- Hong, Q., Kraus, J., Parameter-robust stability of classical three-field formulation of Biot's consolidation model, Available at arXiv:1706.00724 (2017), 20 pages. (2017) MR3820123
- Joodat, S. H. S., Nakshatrala, K. B., Ballarini, R., Modeling flow in porous media with double porosity/permeability: A stabilized mixed formulation, error analysis, and numerical solutions, Available at arXiv:1705.08883 (2017), 49 pages. (2017) MR3801794
- Kolesov, A. E., Vabishchevich, P. N., 10.1515/rnam-2017-0009, Russ. J. Numer. Anal. Math. Model. 32 (2017), 99-113. (2017) Zbl06722604MR3641710DOI10.1515/rnam-2017-0009
- Kraus, J., Lymbery, M., Margenov, S., 10.1002/nla.1959, Numer. Linear Algebra Appl. 22 (2015), 965-986. (2015) Zbl06604518MR3426324DOI10.1002/nla.1959
- Kraus, J., Margenov, S., 10.1515/9783110214833, Radon Series on Computational and Applied Mathematics 5, Walter de Gruyter, Berlin (2009). (2009) Zbl1184.65113MR2574100DOI10.1515/9783110214833
- Nordbotten, J. M., Rahman, T., Repin, S. I., Valdman, J., 10.2478/cmam-2010-0017, Comput. Methods Appl. Math. 10 (2010), 302-314. (2010) Zbl1283.65100MR2770296DOI10.2478/cmam-2010-0017
- Rodrigo, C., Hu, X., Ohm, P., Adler, J. H., Gaspar, F. J., Zikatanov, L., New stabilized discretizations for poroelasticity and the Stokes' equations, Available at arXiv:1706.05169 (2017), 20 pages. (2017) MR3845633
- Warren, J. E., Root, P. J., 10.2118/426-PA, SPE J. 3 (1963), 245-255. (1963) DOI10.2118/426-PA
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.