Algebraic preconditioning for Biot-Barenblatt poroelastic systems

Radim Blaheta; Tomáš Luber

Applications of Mathematics (2017)

  • Volume: 62, Issue: 6, page 561-577
  • ISSN: 0862-7940

Abstract

top
Poroelastic systems describe fluid flow through porous medium coupled with deformation of the porous matrix. In this paper, the deformation is described by linear elasticity, the fluid flow is modelled as Darcy flow. The main focus is on the Biot-Barenblatt model with double porosity/double permeability flow, which distinguishes flow in two regions considered as continua. The main goal is in proposing block diagonal preconditionings to systems arising from the discretization of the Biot-Barenblatt model by a mixed finite element method in space and implicit Euler method in time and estimating the condition number for such preconditioning. The investigation of preconditioning includes its dependence on material coefficients and parameters of discretization.

How to cite

top

Blaheta, Radim, and Luber, Tomáš. "Algebraic preconditioning for Biot-Barenblatt poroelastic systems." Applications of Mathematics 62.6 (2017): 561-577. <http://eudml.org/doc/294179>.

@article{Blaheta2017,
abstract = {Poroelastic systems describe fluid flow through porous medium coupled with deformation of the porous matrix. In this paper, the deformation is described by linear elasticity, the fluid flow is modelled as Darcy flow. The main focus is on the Biot-Barenblatt model with double porosity/double permeability flow, which distinguishes flow in two regions considered as continua. The main goal is in proposing block diagonal preconditionings to systems arising from the discretization of the Biot-Barenblatt model by a mixed finite element method in space and implicit Euler method in time and estimating the condition number for such preconditioning. The investigation of preconditioning includes its dependence on material coefficients and parameters of discretization.},
author = {Blaheta, Radim, Luber, Tomáš},
journal = {Applications of Mathematics},
keywords = {poroelasticity; double permeability; preconditioning; Schur complement},
language = {eng},
number = {6},
pages = {561-577},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Algebraic preconditioning for Biot-Barenblatt poroelastic systems},
url = {http://eudml.org/doc/294179},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Blaheta, Radim
AU - Luber, Tomáš
TI - Algebraic preconditioning for Biot-Barenblatt poroelastic systems
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 6
SP - 561
EP - 577
AB - Poroelastic systems describe fluid flow through porous medium coupled with deformation of the porous matrix. In this paper, the deformation is described by linear elasticity, the fluid flow is modelled as Darcy flow. The main focus is on the Biot-Barenblatt model with double porosity/double permeability flow, which distinguishes flow in two regions considered as continua. The main goal is in proposing block diagonal preconditionings to systems arising from the discretization of the Biot-Barenblatt model by a mixed finite element method in space and implicit Euler method in time and estimating the condition number for such preconditioning. The investigation of preconditioning includes its dependence on material coefficients and parameters of discretization.
LA - eng
KW - poroelasticity; double permeability; preconditioning; Schur complement
UR - http://eudml.org/doc/294179
ER -

References

top
  1. Arnold, D. N., Falk, R. S., Winther, R., 10.1090/S0025-5718-97-00826-0, Math. Comput. 66 (1997), 957-984. (1997) Zbl0870.65112MR1401938DOI10.1090/S0025-5718-97-00826-0
  2. Axelsson, O., Blaheta, R., 10.1002/nla.728, Numer. Linear Algebra Appl. 17 (2010), 787-810. (2010) Zbl1240.65090MR2722647DOI10.1002/nla.728
  3. Axelsson, O., Blaheta, R., Byczanski, P., 10.1007/s00791-013-0209-0, Comput. Visual Sci. 15 (2012), 191-207. (2012) MR3148142DOI10.1007/s00791-013-0209-0
  4. Axelsson, O., Blaheta, R., Luber, T., Preconditioners for mixed FEM solution of stationary and nonstationary porous media flow problems, Large-Scale Scientific Computing Int. Conf. Lecture Notes in Comput. Sci. 9374, Springer, Cham (2015), 3-14 9999DOI99999 10.1007/978-3-319-26520-9 1. (2015) MR3480807
  5. Bai, M., Elsworth, D., Roegiers, J.-C., 10.1029/92wr02746, Water Resources Research 29 (1993), 1621-1633. (1993) DOI10.1029/92wr02746
  6. Barenblatt, G. I., Zheltov, I. P., Kochina, I. N., 10.1016/0021-8928(60)90107-6, PMM, J. Appl. Math. Mech. 24 1286-1303 (1961), English. Russian original translation from Prikl. Mat. Mekh. 24 852-864 1960. (1961) Zbl0104.21702DOI10.1016/0021-8928(60)90107-6
  7. Benzi, M., Golub, G. H., Liesen, J., 10.1017/S0962492904000212, Acta Numerica 14 (2005), 1-137. (2005) Zbl1115.65034MR2168342DOI10.1017/S0962492904000212
  8. Boffi, D., Brezzi, F., Fortin, M., 10.1007/978-3-642-36519-5, Springer Series in Computational Mathematics 44, Springer, Berlin (2013). (2013) Zbl1277.65092MR3097958DOI10.1007/978-3-642-36519-5
  9. project, Decovalex 2019, G, Task, EDZ evolution in sparsely fractured competent rock, http://decovalex.org/task-g.html. 
  10. Elman, H. C., Silvester, D. J., Wathen, A. J., 10.1093/acprof:oso/9780199678792.001.0001, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2014). (2014) Zbl1304.76002MR3235759DOI10.1093/acprof:oso/9780199678792.001.0001
  11. Gerke, H. H., Genuchten, M. T. Van, 10.1029/92wr02339, Water Resources Research 29 (1993), 305-319. (1993) DOI10.1029/92wr02339
  12. Halmos, P. R., 10.1007/978-1-4612-6387-6, The University Series in Undergraduate Mathematics, D. van Nostrand Company, Princeton (1958). (1958) Zbl0107.01404MR0089819DOI10.1007/978-1-4612-6387-6
  13. Henson, V. E., Yang, U. M., 10.1016/S0168-9274(01)00115-5, Appl. Numer. Math. 41 (2002), 155-177. (2002) Zbl0995.65128MR1908755DOI10.1016/S0168-9274(01)00115-5
  14. Hong, Q., Kraus, J., Parameter-robust stability of classical three-field formulation of Biot's consolidation model, Available at arXiv:1706.00724 (2017), 20 pages. (2017) MR3820123
  15. Joodat, S. H. S., Nakshatrala, K. B., Ballarini, R., Modeling flow in porous media with double porosity/permeability: A stabilized mixed formulation, error analysis, and numerical solutions, Available at arXiv:1705.08883 (2017), 49 pages. (2017) MR3801794
  16. Kolesov, A. E., Vabishchevich, P. N., 10.1515/rnam-2017-0009, Russ. J. Numer. Anal. Math. Model. 32 (2017), 99-113. (2017) Zbl06722604MR3641710DOI10.1515/rnam-2017-0009
  17. Kraus, J., Lymbery, M., Margenov, S., 10.1002/nla.1959, Numer. Linear Algebra Appl. 22 (2015), 965-986. (2015) Zbl06604518MR3426324DOI10.1002/nla.1959
  18. Kraus, J., Margenov, S., 10.1515/9783110214833, Radon Series on Computational and Applied Mathematics 5, Walter de Gruyter, Berlin (2009). (2009) Zbl1184.65113MR2574100DOI10.1515/9783110214833
  19. Nordbotten, J. M., Rahman, T., Repin, S. I., Valdman, J., 10.2478/cmam-2010-0017, Comput. Methods Appl. Math. 10 (2010), 302-314. (2010) Zbl1283.65100MR2770296DOI10.2478/cmam-2010-0017
  20. Rodrigo, C., Hu, X., Ohm, P., Adler, J. H., Gaspar, F. J., Zikatanov, L., New stabilized discretizations for poroelasticity and the Stokes' equations, Available at arXiv:1706.05169 (2017), 20 pages. (2017) MR3845633
  21. Warren, J. E., Root, P. J., 10.2118/426-PA, SPE J. 3 (1963), 245-255. (1963) DOI10.2118/426-PA

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.