Efficient measurement of higher-order statistics of stochastic processes
Wladyslaw Magiera; Urszula Libal; Agnieszka Wielgus
Kybernetika (2018)
- Volume: 54, Issue: 5, page 865-887
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMagiera, Wladyslaw, Libal, Urszula, and Wielgus, Agnieszka. "Efficient measurement of higher-order statistics of stochastic processes." Kybernetika 54.5 (2018): 865-887. <http://eudml.org/doc/294182>.
@article{Magiera2018,
abstract = {This paper is devoted to analysis of block multi-indexed higher-order covariance matrices, which can be used for the least-squares estimation problem. The formulation of linear and nonlinear least squares estimation problems is proposed, showing that their statements and solutions lead to generalized `normal equations', employing covariance matrices of the underlying processes. Then, we provide a class of efficient algorithms to estimate higher-order statistics (generalized multi-indexed covariance matrices), which are necessary taking in mind practical aspects of the nonlinear treatment of the least-squares estimation problem. The algorithms are examined for different higher-order and non-Gaussian processes (time-series) and an impact of signal properties on covariance matrices is analysed.},
author = {Magiera, Wladyslaw, Libal, Urszula, Wielgus, Agnieszka},
journal = {Kybernetika},
keywords = {covariance matrix; higher-order statistics; adaptive; nonlinear},
language = {eng},
number = {5},
pages = {865-887},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Efficient measurement of higher-order statistics of stochastic processes},
url = {http://eudml.org/doc/294182},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Magiera, Wladyslaw
AU - Libal, Urszula
AU - Wielgus, Agnieszka
TI - Efficient measurement of higher-order statistics of stochastic processes
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 865
EP - 887
AB - This paper is devoted to analysis of block multi-indexed higher-order covariance matrices, which can be used for the least-squares estimation problem. The formulation of linear and nonlinear least squares estimation problems is proposed, showing that their statements and solutions lead to generalized `normal equations', employing covariance matrices of the underlying processes. Then, we provide a class of efficient algorithms to estimate higher-order statistics (generalized multi-indexed covariance matrices), which are necessary taking in mind practical aspects of the nonlinear treatment of the least-squares estimation problem. The algorithms are examined for different higher-order and non-Gaussian processes (time-series) and an impact of signal properties on covariance matrices is analysed.
LA - eng
KW - covariance matrix; higher-order statistics; adaptive; nonlinear
UR - http://eudml.org/doc/294182
ER -
References
top- Dewilde, P., Stochastic modelling with orthogonal filters., In: Outils et modeles mathematiques pour l'automatique, l'analyse de systemes et le traitement du signal, CNRS (ed.), Paris 1982, pp. 331-398. MR0782526
- Lee, D. T. L., Morf, M., Friedlander, B., 10.1109/tcs.1981.1085020, IEEE Trans. Circuit Systems CAS 28 (1981), 467-481. MR0629997DOI10.1109/tcs.1981.1085020
- Jurečková, J., Regression quantiles and trimmed least squares estimator under a general design., Kybernetika 20 (1984), 5, 345-357. Zbl0561.62027MR0776325
- Levinson, N., 10.1002/sapm1946251261, J. Math. Physics 25 (1947), 261-278. MR0019257DOI10.1002/sapm1946251261
- Mandl, P., Duncan, T. E., Pasik-Duncan, B., On the consistency of a least squares identification procedure., Kybernetika 24 (1988), 5, 340-346. MR0970211
- Mendel, J. M., 10.1109/5.75086, Proc. IEEE 79 (1991), 3, 278-305. DOI10.1109/5.75086
- Pázman, A., Probability distribution of the multivariate nonlinear least squares estimates., Kybernetika 20 (1984), 3, 209-230. MR0763647
- Pronzato, L., Pázman, A., Second-order approximation of the entropy in nonlinear least-squares estimation., Kybernetika 30 (1994), 2, 187-198. MR1283494
- Schur, I., 10.1007/978-3-0348-5483-2, Operator Theory: Advances and Applications 18, Springer-Verlag 1086. DOI10.1007/978-3-0348-5483-2
- Stellakis, H. M., Manolakos, E. M., 10.1002/(sici)1099-1115(199603)10:2/3<283::aid-acs351>3.3.co;2-2, Int. J. Adaptive Control Signal Process. 10 (1996), 283-302. DOI10.1002/(sici)1099-1115(199603)10:2/3<283::aid-acs351>3.3.co;2-2
- Wiener, N., Nonlinear Problems in Random Theory., MIT Press, 1958. MR0100912
- Zarzycki, J., 10.1023/b:mult.0000028007.05748.48, MDSSP J. 15 (2004), 3, 217-241. MR2075150DOI10.1023/b:mult.0000028007.05748.48
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.