Regression quantiles and trimmed least squares estimator under a general design
Kybernetika (1984)
- Volume: 20, Issue: 5, page 345-357
- ISSN: 0023-5954
Access Full Article
topHow to cite
topJurečková, Jana. "Regression quantiles and trimmed least squares estimator under a general design." Kybernetika 20.5 (1984): 345-357. <http://eudml.org/doc/27639>.
@article{Jurečková1984,
author = {Jurečková, Jana},
journal = {Kybernetika},
keywords = {asymmetric distribution; robust estimation; L-estimators; linear model; i.i.d. error terms; Bahadur-type representation of regression quantiles; asymptotic representation; asymptotic distribution of the trimmed least squares estimator},
language = {eng},
number = {5},
pages = {345-357},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Regression quantiles and trimmed least squares estimator under a general design},
url = {http://eudml.org/doc/27639},
volume = {20},
year = {1984},
}
TY - JOUR
AU - Jurečková, Jana
TI - Regression quantiles and trimmed least squares estimator under a general design
JO - Kybernetika
PY - 1984
PB - Institute of Information Theory and Automation AS CR
VL - 20
IS - 5
SP - 345
EP - 357
LA - eng
KW - asymmetric distribution; robust estimation; L-estimators; linear model; i.i.d. error terms; Bahadur-type representation of regression quantiles; asymptotic representation; asymptotic distribution of the trimmed least squares estimator
UR - http://eudml.org/doc/27639
ER -
References
top- R. R. Bahadur, A note on quantiles in large samples, Ann. Math. Statist. 37 (1966), 577-580. (1966) Zbl0147.18805MR0189095
- G. Bassett, R. Koenker, An empirical quantile function for linear models with iid errors, J. Amer. Statist. Assoc. 77 (1982), 407-415. (1982) Zbl0493.62047MR0664682
- G. Bassett, R. Koenker, Convergence of an empirical distribution function for the linear model, Submitted (1983). (1983)
- P. J. Bickel, On some analogues to linear combinations of order statistics in the linear model, Ann. Statist. / (1973), 597-616. (1973) Zbl0265.62021MR0314206
- P. Billingsley, Convergence of Probability Measures, J. Wiley, New York, 1968. (1968) Zbl0172.21201MR0233396
- P. J. Huber, Robust Statistics, J. Wiley, New York 1981. (1981) Zbl0536.62025MR0606374
- L. A. Jaeckel, Estimating regression coefficients by minimizing the dispersion of the residuals, Ann. Math. Statist. 43 (1972), 1449-1458. (1972) Zbl0277.62049MR0348930
- J. Jurečková, Nonparametric estimate of regression coefficients, Ann. Math. Statist. 42 (1971), 1328-1338. (1971) MR0295487
- J. Jurečková, Asymptotic independence of rank test statistic for testing symmetry on regression, Sankhya A 33 (1971), 1-18. (1971) MR0321234
- J. Jurečková, Asymptotic relations of M-estimates and R-estimates in linear regression model, Ann. Statist. 5 (1977), 464-472. (1977) MR0433698
- J. Jurečková, Asymptotic representation of M-estimators of location, Math. Operations-forsch. Statist., Ser. Statistics 11 (1980), 61-73. (1980) MR0606159
- J. Jurečková, Robust estimators of location and regression parameters and their second order asymptotic relations, In: Trans. 9th Prague Conf. on Inform. Theory, Statist. Dec. Functions and Random Processes, pp. 19-32. Academia, Praha 1983. (1983) MR0757722
- J. Jurečková, Winsorized least-squares estimator and its M-estimator counterpart, Contributions to Statistics: Essays in Honour of Norman L. Johnson (ed. P. K. Sen), pp. 237- 245. North-Holland, Amsterdam 1983. (1983) MR0730464
- J. Jurečková, P. K. Sen, On adaptive scale-equivariant M-estimators in linear models, Statistics and Decisions 2, (1984), to appear. (1984) MR0785200
- R. Koenker, A note on L-estmates for linear models, Preprint. Bell Laboratories, Murray- Hill (1983). (1983) MR0782652
- R. Koenker, G. Bassett, Regression quantiles, Econometrica 46 (1978), 33 - 50. (1978) Zbl0373.62038MR0474644
- H. L. Koul, Asymptotic behavior of a class of confidence regions based on ranks in regression, Ann. Math. Statist. 42 (1971), 466-476. (1971) Zbl0215.54204MR0288896
- S. Portnoy, Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles, Submitted (1983). (1983) MR0786311
- D. Ruppert, R. J. Carroll, Trimmed least-squares estimation in the linear model, J. Amer. Statist. Assoc. 75 (1980), 828-838. (1980) Zbl0459.62055MR0600964
Citations in EuDML Documents
top- Jan Ámos Víšek, Large adaptive estimation in linear regression model. I. Consistency
- Jan Ámos Víšek, Adaptive estimation in linear regression model. II. Asymptotic normality
- Jan Ámos Víšek, Instrumental weighted variables under heteroscedasticity. Part I – Consistency
- Wladyslaw Magiera, Urszula Libal, Agnieszka Wielgus, Efficient measurement of higher-order statistics of stochastic processes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.