On a special class of left-continuous uninorms
Kybernetika (2018)
- Volume: 54, Issue: 3, page 427-442
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLi, Gang. "On a special class of left-continuous uninorms." Kybernetika 54.3 (2018): 427-442. <http://eudml.org/doc/294184>.
@article{Li2018,
abstract = {This paper is devoted to the study of a class of left-continuous uninorms locally internal in the region $A(e)$ and the residual implications derived from them. It is shown that such uninorm can be represented as an ordinal sum of semigroups in the sense of Clifford. Moreover, the explicit expressions for the residual implication derived from this special class of uninorms are given. A set of axioms is presented that characterizes those binary functions $I: [0,1]^\{2\}\rightarrow [0,1]$ for which a uninorm $U$ of this special class exists in such a way that $I$ is the residual implications derived from $U$.},
author = {Li, Gang},
journal = {Kybernetika},
keywords = {uninorm; internal operator; ordinal sum; residual implication; triangular subnorm},
language = {eng},
number = {3},
pages = {427-442},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On a special class of left-continuous uninorms},
url = {http://eudml.org/doc/294184},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Li, Gang
TI - On a special class of left-continuous uninorms
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 427
EP - 442
AB - This paper is devoted to the study of a class of left-continuous uninorms locally internal in the region $A(e)$ and the residual implications derived from them. It is shown that such uninorm can be represented as an ordinal sum of semigroups in the sense of Clifford. Moreover, the explicit expressions for the residual implication derived from this special class of uninorms are given. A set of axioms is presented that characterizes those binary functions $I: [0,1]^{2}\rightarrow [0,1]$ for which a uninorm $U$ of this special class exists in such a way that $I$ is the residual implications derived from $U$.
LA - eng
KW - uninorm; internal operator; ordinal sum; residual implication; triangular subnorm
UR - http://eudml.org/doc/294184
ER -
References
top- Aguiló, I., Suñer, J., Torrens, J., 10.1016/j.ins.2010.06.023, Inform. Sci. 180 (2010), 3992-4005. MR2671753DOI10.1016/j.ins.2010.06.023
- Alsina, C., Frank, M. J., Schweizer, B., 10.1142/9789812774200, World Scientific, New Jersey 2006. MR2222258DOI10.1142/9789812774200
- Baczyński, M., Jayaram, B., Fuzzy Implications., Springer, Berlin, Herdelberg 2008. Zbl1293.03012
- Baets, B. De, 10.1007/978-1-4615-2357-4_3, In: Fuzzy Set Theory and Advanced Mathemtical Applications (D. Ruan, ed.), Kluwer, Dordrecht 1995, pp. 67-87. DOI10.1007/978-1-4615-2357-4_3
- Baets, B. De, Fodor, J., 10.1007/s005000050057, Soft Comput. 3 (1999), 89-100. MR2391544DOI10.1007/s005000050057
- Baets, B. De, Fodor, J., 10.1016/s0165-0114(98)00265-6, Fuzzy Sets Systems 104 (1999), 133-136. Zbl0928.03060MR1685816DOI10.1016/s0165-0114(98)00265-6
- Baets, B. De, 10.1016/s0377-2217(98)00325-7, Eur. J. Oper. Res. 118 (1998), 631-642. Zbl1178.03070DOI10.1016/s0377-2217(98)00325-7
- Baets, B. De, Kwasnikowska, N., Kerre, E., Fuzzy morphology based on uninorms., In: Seventh IFSA World Congress, Prague, 220 (1997), 215-220.
- Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J., 10.1142/s021848850900570x, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17 (2009), 1-14. Zbl1178.03070MR2514519DOI10.1142/s021848850900570x
- Clifford, A. H., 10.2307/2372706, Amer. J. Math. 76 (1954), 631-646. MR0062118DOI10.2307/2372706
- Csiszár, O., Fodor, J., On uninorms with fixed values along their border., Ann. Univ. Sci. Bundapest., Sect. Com. 42 (2014), 93-108. MR3275665
- Czogała, E., Drewniak, J., 10.1016/0165-0114(84)90072-1, Fuzzy Sets Systems 12 (1984), 249-269. MR0740097DOI10.1016/0165-0114(84)90072-1
- Drygaś, P., 10.1016/j.fss.2015.05.018, Kybernetika 41 (2005), 213-226. Zbl1249.03093MR2138769DOI10.1016/j.fss.2015.05.018
- Drygaś, P., On the structure of continuous uninorms., Kybernetika 43 (2007), 183-196. Zbl1132.03349MR2343394
- Drygaś, P., 10.1016/j.fss.2009.09.017, Fuzzy Sets Systems 161 (2010), 149-157. Zbl1191.03039MR2566236DOI10.1016/j.fss.2009.09.017
- Drygaś, P., Ruiz-Aguilera, D., Torrens, J., 10.1016/j.fss.2015.07.015, Fuzzy Sets Systems 287 (2016), 137-153. MR3447023DOI10.1016/j.fss.2015.07.015
- Esteva, F., Godo, L., 10.1016/s0165-0114(01)00098-7, Fuzzy Sets Systems 124 (2001), 271-288. MR1860848DOI10.1016/s0165-0114(01)00098-7
- Fodor, J., Yager, R. R., Rybalov, A., 10.1142/s0218488597000312, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. Zbl1232.03015MR1471619DOI10.1142/s0218488597000312
- Fodor, J., Baets, B. De, 10.1016/j.fss.2011.12.001, Fuzzy Sets Systems 202 (2012), 89-99. Zbl1268.03027MR2934788DOI10.1016/j.fss.2011.12.001
- Hu, S., Li, Z., 10.1016/s0165-0114(00)00044-0, Fuzzy Sets Systems 124 (2001), 43-52. MR1859776DOI10.1016/s0165-0114(00)00044-0
- Jenei, S., 10.1016/s0165-0114(01)00040-9, Fuzzy Sets Systems 126 (2002), 199-205. MR1884686DOI10.1016/s0165-0114(01)00040-9
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
- Klement, E. P., Mesiar, R., Pap, E., 10.1142/s0218488500000514, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 8 (2000), 707-717. MR1803475DOI10.1142/s0218488500000514
- Li, G., Liu, H-W., Fodor, J., 10.1142/s0218488514500299, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22 (2014), 591-604. MR3252143DOI10.1142/s0218488514500299
- Li, G., Liu, H-W., Fodor, J., 10.14736/kyb-2015-4-0699, Kybernetika 51(4) (2015), 699-711. MR3423195DOI10.14736/kyb-2015-4-0699
- Li, G., Liu, H-W., 10.1016/j.fss.2015.01.019, Fuzzy Sets Systems 287 (2016), 154-171. MR3447024DOI10.1016/j.fss.2015.01.019
- Li, G., Liu, H-W., 10.1007/978-3-319-46206-6_25, In: Fan TH., Chen SL., Wang SM., Li YM. (eds) Quantitative Logic and Soft Computing 2016. Advances in Intelligent Systems and Computing, vol. 510. Springer, 2017, pp. 251-259. DOI10.1007/978-3-319-46206-6_25
- Li, G., Liu, H-W., 10.1016/j.fss.2017.07.014, Fuzzy Sets Systems 332 (2017), 116-128. MR3732254DOI10.1016/j.fss.2017.07.014
- Martin, J., Mayor, G., Torrens, J., 10.1016/s0165-0114(02)00430-x, Fuzzy Sets Systems 137(1) (2003), 27-42. Zbl1022.03038MR1992696DOI10.1016/s0165-0114(02)00430-x
- Massanet, S., Torrens, J., 10.1016/j.fss.2010.12.012, Fuzzy Sets Systems 168 (2011), 47-69. MR2772620DOI10.1016/j.fss.2010.12.012
- Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J., 10.3233/ifs-151728, J. Intell. Fuzzy Systems 29(3) (2015), 1021-1037. MR3414365DOI10.3233/ifs-151728
- Mesiarová, A., 10.1016/j.ins.2014.12.060, Inform. Sci. 301 (2015), 227-240. MR3311790DOI10.1016/j.ins.2014.12.060
- Mesiarová, A., Characterization of uninorms with continuous underlying t-norm and t-conorm by their set of discontinuity points., IEEE Trans. Fuzzy Systems PP (2017), in press. MR3614252
- Mesiarová, A., 10.1016/j.ijar.2017.01.007, Int. J. Approx. Reason. 87 (2017), 176-192. MR3614252DOI10.1016/j.ijar.2017.01.007
- Noguera, C., Esteva, F., Godo, L., 10.1016/j.ins.2009.12.011, Inform. Sci. 180 (2010), 1354-1372. MR2587910DOI10.1016/j.ins.2009.12.011
- Petrík, M., Mesiar, R., 10.1016/j.fss.2013.09.013, Fuzzy Sets Systems 240 (2014), 22-38. Zbl1315.03099MR3167510DOI10.1016/j.fss.2013.09.013
- Pouzet, M., Rosenberg, I. G., Stone, M. G., 10.1007/bf01234102, Algebra Univers. 36(2) (1996), 159-184. MR1402510DOI10.1007/bf01234102
- Qin, F., Zhao, B., 10.1016/j.fss.2005.04.010, Fuzzy Sets Systems 155 (2005), 446-458. Zbl1077.03514MR2181001DOI10.1016/j.fss.2005.04.010
- Ruiz, D., Torrens, J., Residual implications and co-implications from idempotent uninorms., Kybernetika 40 (2004), 21-38. Zbl1249.94095MR2068596
- Ruiz, D., Torrens, J., 10.1109/tfuzz.2005.864087, IEEE Trans. Fuzzy Systems 14 (2006), 2, 180-190. DOI10.1109/tfuzz.2005.864087
- Ruiz-Aguilera, D., Torrens, J., 10.1016/j.fss.2008.05.015, Fuzzy Sets Systems 160 (2009), 832-852. MR2493278DOI10.1016/j.fss.2008.05.015
- Ruiz-Aguilera, D., Torrens, J., Baets, B. De, Fodor, J., 10.1007/978-3-642-14049-5_44, In: IPMU 2010, LNAI 6178, Eds. E.Hüllermeier, R.Kruse and F.Hoffmann, Springer-Verlag Berlin Heidelberg 2010, pp. 425-434. DOI10.1007/978-3-642-14049-5_44
- Ruiz-Aguilera, D., Torrens, J., 10.1016/j.fss.2014.10.020, Fuzzy Sets Syst. 268 (2015), 44-58. MR3320246DOI10.1016/j.fss.2014.10.020
- Takács, M., Uninorm-based models for FLC systems., J. Intell. Fuzzy Systems 19 (2008), 65-73.
- Yager, R., Rybalov, A., 10.1016/0165-0114(95)00133-6, Fuzzy Sets Systems 80 (1996), 111-120. Zbl0871.04007MR1389951DOI10.1016/0165-0114(95)00133-6
- Yager, R., Rybalov, A., 10.1007/s10700-010-9096-8, Fuzzy Optim. Decis. Making 10 (2011), 59-70. MR2799503DOI10.1007/s10700-010-9096-8
- Yager, R., 10.1016/s0165-0114(00)00027-0, Fuzzy Sets Systems 122 (2001), 167-175. Zbl0978.93007MR1839955DOI10.1016/s0165-0114(00)00027-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.