On almost equitable uninorms

Gang Li; Hua-Wen Liu; János Fodor

Kybernetika (2015)

  • Volume: 51, Issue: 4, page 699-711
  • ISSN: 0023-5954

Abstract

top
Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained.

How to cite

top

Li, Gang, Liu, Hua-Wen, and Fodor, János. "On almost equitable uninorms." Kybernetika 51.4 (2015): 699-711. <http://eudml.org/doc/271807>.

@article{Li2015,
abstract = {Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained.},
author = {Li, Gang, Liu, Hua-Wen, Fodor, János},
journal = {Kybernetika},
keywords = {uninorm; representable uninorm; aggregation functions; negation; contradictory information; uninorm; representable uninorm; aggregation functions; negation; contradictory information},
language = {eng},
number = {4},
pages = {699-711},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On almost equitable uninorms},
url = {http://eudml.org/doc/271807},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Li, Gang
AU - Liu, Hua-Wen
AU - Fodor, János
TI - On almost equitable uninorms
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 4
SP - 699
EP - 711
AB - Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained.
LA - eng
KW - uninorm; representable uninorm; aggregation functions; negation; contradictory information; uninorm; representable uninorm; aggregation functions; negation; contradictory information
UR - http://eudml.org/doc/271807
ER -

References

top
  1. Bustince, H., Montero, J., Mesiar, R., 10.1016/j.fss.2008.09.018, Fuzzy Sets Syst. 160 (2009), 766-777. Zbl1186.68459MR2493274DOI10.1016/j.fss.2008.09.018
  2. Baets, B. De, 10.1016/s0377-2217(98)00325-7, Eur. J. Oper. Res. 118 (1998), 631-642. Zbl1178.03070DOI10.1016/s0377-2217(98)00325-7
  3. Baets, B. De, Fodor, J., 10.1007/s005000050057, Soft Comput. 3 (1999), 89-100. DOI10.1007/s005000050057
  4. Baets, B.De, Fodor, J., 10.1016/s0165-0114(98)00265-6, Fuzzy Sets Syst. 104 (1999), 133-136. Zbl0928.03060MR1685816DOI10.1016/s0165-0114(98)00265-6
  5. Baets, B. De, Kwasnikowska, N., Kerre, E., Fuzzy morphology based on uninorms., In: Seventh IFSA World Congress, Prague 1997, pp. 215-220. 
  6. Hliněná, D., Kalina, M., Král', P., 10.1016/j.ins.2013.09.045, Information Sciences 260 (2014), 171-184. MR3146461DOI10.1016/j.ins.2013.09.045
  7. Drygaś, P., Discussion of the structure of uninorms., Kybernetika 41 (2005), 213-226. Zbl1249.03093MR2138769
  8. Drygaś, P., On the structure of continuous uninorms., Kybernetika 43 (2007), 183-196. Zbl1132.03349MR2343394
  9. Drygaś, P., 10.1016/j.fss.2009.09.017, Fuzzy Sets Syst. 161 (2010), 149-157. Zbl1191.03039MR2566236DOI10.1016/j.fss.2009.09.017
  10. Drygaś, P., Ruiz-Aguilera, D., Torrens, J., A characterization of uninorms locally internal in A ( e ) with continuous underlying operators., Fuzzy Sets Syst. (submitted). 
  11. Fodor, J., Roubens, M., 10.1007/978-94-017-1648-2, Kluwer Academic Publishers, Dordrecht 1994. Zbl0827.90002DOI10.1007/978-94-017-1648-2
  12. Fodor, J., Yager, R. R., Rybalov, A., 10.1142/s0218488597000312, Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 5 (1997), 411-427. Zbl1232.03015MR1471619DOI10.1142/s0218488597000312
  13. Fodor, J., Baets, B. De, 10.1016/j.fss.2011.12.001, Fuzzy Sets Syst. 202 (2012), 89-99. Zbl1268.03027MR2934788DOI10.1016/j.fss.2011.12.001
  14. Gabbay, D. M., Metcalfe, G., 10.1007/s00153-007-0047-1, Arch. Math. Log. 46 (2007), 425-449. Zbl1128.03015MR2321585DOI10.1007/s00153-007-0047-1
  15. Li, G., Liu, H.-W., 10.1016/j.fss.2015.01.019, Fuzzy Sets and Systems (2015). DOI10.1016/j.fss.2015.01.019
  16. Li, G., Liu, H.-W., Fodor, J., 10.1142/s0218488514500299, Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 22 (2014), 591-604. MR3252143DOI10.1142/s0218488514500299
  17. Hu, S., Li, Z., 10.1016/s0165-0114(00)00044-0, Fuzzy Sets Syst. 124 (2001), 43-52. MR1859776DOI10.1016/s0165-0114(00)00044-0
  18. Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J., 10.1016/j.fss.2014.05.012, Fuzzy Sets and Syst. 261 (2015), 20-32. MR3291483DOI10.1016/j.fss.2014.05.012
  19. Klement, E. P., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
  20. Petrík, M., Mesiar, R., 10.1016/j.fss.2013.09.013, Fuzzy Sets Syst. 240 (2014), 22-38. Zbl1315.03099MR3167510DOI10.1016/j.fss.2013.09.013
  21. Pradera, A., 10.1007/978-3-540-88269-5_6, In: Lecture Notes in Computer Sciences, vol. 5285, (V. Torra and Y. Narukawa, eds.), Springer 2008, pp. 50-61. Zbl1178.68590DOI10.1007/978-3-540-88269-5_6
  22. Pradera, A., Trillas, E., Aggregation, non-contradiction and excluded-middle., Mathware Soft Comput. XIII (2006), 189-201. Zbl1122.68128MR2321602
  23. Pradera, A., Trillas, E., Aggregation operators from the ancient NC and EM point of view., Kybernetika 42 (2006), 243-260. Zbl1249.03101MR2253387
  24. Pradera, A., Beliakov, G., Bustince, H., 10.1016/j.fss.2011.10.007, Fuzzy Sets Syst. 191 (2012), 41-61. Zbl1238.68162MR2874822DOI10.1016/j.fss.2011.10.007
  25. Qin, F., Zhao, B., 10.1016/j.fss.2005.04.010, Fuzzy Sets Syst. 155 (2005), 446-458. Zbl1077.03514MR2181001DOI10.1016/j.fss.2005.04.010
  26. Ruiz, D., Torrens, J., 10.1109/tfuzz.2005.864087, IEEE Trans. Fuzzy Syst. 14 (2006), 180-190. DOI10.1109/tfuzz.2005.864087
  27. Ruiz-Aguilera, D., Torrens, J., Baets, B. De, Fodor, J. C., 10.1007/978-3-642-14049-5_44, In: IPMU 2010, LNAI 6178 (E. Hüllermeier, R. Kruse and F. Hoffmann, eds.), Springer-Verlag, Berlin - Heidelberg 2010, pp. 425-434. DOI10.1007/978-3-642-14049-5_44
  28. Ruiz-Aguilera, D., Torrens, J., 10.1016/j.fss.2008.05.015, Fuzzy Sets Syst. 160 (2009), 832-852. Zbl1184.03014MR2493278DOI10.1016/j.fss.2008.05.015
  29. Xie, A., Liu, H., 10.1016/j.fss.2012.05.008, Fuzzy Sets Syst. 211 (2013), 62-72. Zbl1279.03047MR2991797DOI10.1016/j.fss.2012.05.008
  30. Yager, R., Rybalov, A., 10.1016/0165-0114(95)00133-6, Fuzzy Sets Syst. 80 (1996), 111-120. Zbl0871.04007MR1389951DOI10.1016/0165-0114(95)00133-6
  31. Yager, R., Rybalov, A., 10.1007/s10700-010-9096-8, Fuzzy Optim. Decis. Making 10 (2011), 59-70. Zbl1304.91068MR2799503DOI10.1007/s10700-010-9096-8
  32. Yager, R., 10.1016/s0165-0114(00)00027-0, Fuzzy Sets Syst. 122 (2001), 167-175. Zbl0978.93007MR1839955DOI10.1016/s0165-0114(00)00027-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.