Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations
Kybernetika (2018)
- Volume: 54, Issue: 3, page 576-592
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLin, Meili, and Sun, Zhendong. "Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations." Kybernetika 54.3 (2018): 576-592. <http://eudml.org/doc/294185>.
@article{Lin2018,
abstract = {In this paper, we develop computational procedures to approximate the spectral abscissa of the switched linear system via square coordinate transformations. First, we design iterative algorithms to obtain a sequence of the least $\mu _1$ measure. Second, it is shown that this sequence is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the effectiveness of the proposed method.},
author = {Lin, Meili, Sun, Zhendong},
journal = {Kybernetika},
keywords = {switched linear systems; matrix set measure; spectral abscissa; coordinate transformations},
language = {eng},
number = {3},
pages = {576-592},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations},
url = {http://eudml.org/doc/294185},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Lin, Meili
AU - Sun, Zhendong
TI - Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 576
EP - 592
AB - In this paper, we develop computational procedures to approximate the spectral abscissa of the switched linear system via square coordinate transformations. First, we design iterative algorithms to obtain a sequence of the least $\mu _1$ measure. Second, it is shown that this sequence is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the effectiveness of the proposed method.
LA - eng
KW - switched linear systems; matrix set measure; spectral abscissa; coordinate transformations
UR - http://eudml.org/doc/294185
ER -
References
top- Barabanov, N., 10.1109/tac.1969.1099279, Automat. Remote Control 50 (1989), 4, 475-479. MR0998835DOI10.1109/tac.1969.1099279
- Blanchini, F., 10.1109/9.887627, IEEE Trans. Automat. Control 45 (2000), 11, 2061-2070. MR1798443DOI10.1109/9.887627
- Dayawansa, W., Martin, C., 10.1109/9.754812, IEEE Trans. Automat. Control 44 (1999), 4, 751-760. MR1684429DOI10.1109/9.754812
- Chitour, Y., Mason, P., Sigalotti, M., 10.1016/j.sysconle.2012.04.005, Systems Control Lett. 61 (2012), 747-757. MR2929512DOI10.1016/j.sysconle.2012.04.005
- Gurvits, L., 10.1016/0024-3795(95)90006-3, Linear Algebra Appl. 231 (1995), 47-85. MR1361100DOI10.1016/0024-3795(95)90006-3
- Johansson, M., 10.1007/3-540-36801-9, Springer, New York 2003. MR1946385DOI10.1007/3-540-36801-9
- Johansson, M., Rantzer, A., 10.1109/9.664157, IEEE Trans. Automat. Control 43 (1998), 4, 555-559. MR1617547DOI10.1109/9.664157
- Liberzon, D., Hespanha, J., Morse, A., 10.1016/s0167-6911(99)00012-2, Systems Control Lett. 37 (1999), 117-122. MR1751257DOI10.1016/s0167-6911(99)00012-2
- Lin, M., Sun, Z., 10.1007/s11424-015-4175-0, J. Systems Science Complexity 29 (2016), 2, 350-366. MR3479753DOI10.1007/s11424-015-4175-0
- Molchanov, A., Pyatnitskiy, Y., 10.1016/0167-6911(89)90021-2, Systems Control Lett. 13 (1989), 1, 59-64. MR1006848DOI10.1016/0167-6911(89)90021-2
- Morse, A., 10.1109/9.539424, IEEE Trans. Automat. Control 41 (1996), 10, 1413-1431. MR1413375DOI10.1109/9.539424
- Narendra, K., Balakrishnan, J., 10.1109/9.362846, IEEE Trans. Automat. Control 39 (1994), 12, 2469-2471. MR1337573DOI10.1109/9.362846
- Nedic, A., Ozdaglar, A., 10.1007/s10957-009-9522-7, J. Optim. Theory Appl. 1 (2009), 205-228. MR2520367DOI10.1007/s10957-009-9522-7
- Parrilo, P., Jadbabaie, A., 10.1016/j.laa.2007.12.027, Linear Algebra Appl. 428 (2008), 10, 2385-2402. MR2408034DOI10.1016/j.laa.2007.12.027
- Protasov, V., Jungers, R., 10.1016/j.laa.2007.12.027, IEEE Trans. Automat. Control 61 (2016), 3, 795-798. MR3474181DOI10.1016/j.laa.2007.12.027
- Shih, M., Wu, J., Pang, C., 10.1016/0024-3795(95)00592-7, Linear Algebra Appl. 252 (1997), 61-70. MR1428628DOI10.1016/0024-3795(95)00592-7
- Sun, Z., 10.1109/tac.2008.917644, IEEE Trans. Automat. Control 53 (2008), 2, 625-631. MR2394405DOI10.1109/tac.2008.917644
- Sun, Z., Matrix measure approach for stability of switched linear systems., In: 7th IFAC Symposium Nonlinear Control System, Pretoria 2007.
- Shorten, R., Narendra, K., 10.1109/tac.2003.809795, IEEE Trans. Automat. Control 48 (2003), 4, 618-621. MR1968044DOI10.1109/tac.2003.809795
- Sun, Z., Ge, S., 10.1007/978-0-85729-256-8, Springer-Verlag, London 2011. MR3221851DOI10.1007/978-0-85729-256-8
- Xiong, J., Sun, Z., 10.1109/icca.2011.6138012, In: 9th IEEE International Conference on Control and Automation, Santiago 2011. DOI10.1109/icca.2011.6138012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.