C*-algebras have a quantitative version of Pełczyński's property (V)
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 937-951
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Angosto, C., Cascales, B., 10.1016/j.topol.2008.12.011, Topology Appl. 156 (2009), 1412-1421. (2009) Zbl1176.46012MR2502017DOI10.1016/j.topol.2008.12.011
- Behrends, E., New proofs of Rosenthal’s -theorem and the Josefson-Nissenzweig theorem, Bull. Pol. Acad. Sci., Math. 43 (1995), 283-295. (1995) Zbl0847.46007MR1414785
- Bendová, H., 10.1016/j.jmaa.2013.11.033, J. Math. Anal. Appl. 412 (2014), 1097-1104. (2014) Zbl1322.46008MR3147271DOI10.1016/j.jmaa.2013.11.033
- Blasi, F. S. De, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 21 (1977), 259-262. (1977) Zbl0365.46015MR0482402
- Gasparis, I., 10.1016/j.jmaa.2015.09.079, J. Math. Anal. Appl. 434 (2016), 1160-1165. (2016) Zbl06509536MR3415714DOI10.1016/j.jmaa.2015.09.079
- Harmand, P., Werner, D., Werner, W., 10.1007/BFb0084355, Lecture Notes in Mathematics 1547, Springer, Berlin (1993). (1993) Zbl0789.46011MR1238713DOI10.1007/BFb0084355
- Kalenda, O. F. K., Pfitzner, H., Spurný, J., 10.1016/j.jfa.2011.02.006, J. Funct. Anal. 260 (2011), 2986-2996. (2011) Zbl1248.46012MR2774062DOI10.1016/j.jfa.2011.02.006
- Krulišová, H., Quantification of Pe{ł}czyński's property (V), To appear in Math. Nachr.
- Lechner, J., 10.1016/j.jmaa.2016.06.038, J. Math. Anal. Appl. 446 (2017), 1362-1371. (2017) Zbl1364.46015MR3563039DOI10.1016/j.jmaa.2016.06.038
- Pfitzner, H., 10.1007/BF01459739, Math. Ann. 298 (1994), 349-371. (1994) Zbl0791.46035MR1256621DOI10.1007/BF01459739
- Rudin, W., Real and Complex Analysis, McGraw-Hill, New York (1987). (1987) Zbl0925.00005MR0924157
- Simons, S., 10.1007/BF01430962, Math. Ann. 216 (1975), 225-231. (1975) Zbl0294.46010MR0402470DOI10.1007/BF01430962
- Takesaki, M., Theory of Operator Algebras I, Encyclopaedia of Mathematical Sciences 124, Operator Algebras and Non-Commutative Geometry 5, Springer, Berlin (2002). (2002) Zbl0990.46034MR1873025