C*-algebras have a quantitative version of Pełczyński's property (V)

Hana Krulišová

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 4, page 937-951
  • ISSN: 0011-4642

Abstract

top
A Banach space X has Pełczyński’s property (V) if for every Banach space Y every unconditionally converging operator T : X Y is weakly compact. H. Pfitzner proved that C * -algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that C ( K ) spaces for a compact Hausdorff space K enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover, we prove that in dual Banach spaces a quantitative version of the property (V) implies a quantitative version of the Grothendieck property.

How to cite

top

Krulišová, Hana. "C*-algebras have a quantitative version of Pełczyński's property (V)." Czechoslovak Mathematical Journal 67.4 (2017): 937-951. <http://eudml.org/doc/294226>.

@article{Krulišová2017,
abstract = {A Banach space $X$ has Pełczyński’s property (V) if for every Banach space $Y$ every unconditionally converging operator $T\colon X\rightarrow Y$ is weakly compact. H. Pfitzner proved that $C^*$-algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that $C(K)$ spaces for a compact Hausdorff space $K$ enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover, we prove that in dual Banach spaces a quantitative version of the property (V) implies a quantitative version of the Grothendieck property.},
author = {Krulišová, Hana},
journal = {Czechoslovak Mathematical Journal},
keywords = {Pełczyński’s property (V); $C^*$-algebra; Grothendieck property},
language = {eng},
number = {4},
pages = {937-951},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {C*-algebras have a quantitative version of Pełczyński's property (V)},
url = {http://eudml.org/doc/294226},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Krulišová, Hana
TI - C*-algebras have a quantitative version of Pełczyński's property (V)
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 937
EP - 951
AB - A Banach space $X$ has Pełczyński’s property (V) if for every Banach space $Y$ every unconditionally converging operator $T\colon X\rightarrow Y$ is weakly compact. H. Pfitzner proved that $C^*$-algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that $C(K)$ spaces for a compact Hausdorff space $K$ enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover, we prove that in dual Banach spaces a quantitative version of the property (V) implies a quantitative version of the Grothendieck property.
LA - eng
KW - Pełczyński’s property (V); $C^*$-algebra; Grothendieck property
UR - http://eudml.org/doc/294226
ER -

References

top
  1. Angosto, C., Cascales, B., 10.1016/j.topol.2008.12.011, Topology Appl. 156 (2009), 1412-1421. (2009) Zbl1176.46012MR2502017DOI10.1016/j.topol.2008.12.011
  2. Behrends, E., New proofs of Rosenthal’s 1 -theorem and the Josefson-Nissenzweig theorem, Bull. Pol. Acad. Sci., Math. 43 (1995), 283-295. (1995) Zbl0847.46007MR1414785
  3. Bendová, H., 10.1016/j.jmaa.2013.11.033, J. Math. Anal. Appl. 412 (2014), 1097-1104. (2014) Zbl1322.46008MR3147271DOI10.1016/j.jmaa.2013.11.033
  4. Blasi, F. S. De, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 21 (1977), 259-262. (1977) Zbl0365.46015MR0482402
  5. Gasparis, I., 10.1016/j.jmaa.2015.09.079, J. Math. Anal. Appl. 434 (2016), 1160-1165. (2016) Zbl06509536MR3415714DOI10.1016/j.jmaa.2015.09.079
  6. Harmand, P., Werner, D., Werner, W., 10.1007/BFb0084355, Lecture Notes in Mathematics 1547, Springer, Berlin (1993). (1993) Zbl0789.46011MR1238713DOI10.1007/BFb0084355
  7. Kalenda, O. F. K., Pfitzner, H., Spurný, J., 10.1016/j.jfa.2011.02.006, J. Funct. Anal. 260 (2011), 2986-2996. (2011) Zbl1248.46012MR2774062DOI10.1016/j.jfa.2011.02.006
  8. Krulišová, H., Quantification of Pe{ł}czyński's property (V), To appear in Math. Nachr. 
  9. Lechner, J., 10.1016/j.jmaa.2016.06.038, J. Math. Anal. Appl. 446 (2017), 1362-1371. (2017) Zbl1364.46015MR3563039DOI10.1016/j.jmaa.2016.06.038
  10. Pfitzner, H., 10.1007/BF01459739, Math. Ann. 298 (1994), 349-371. (1994) Zbl0791.46035MR1256621DOI10.1007/BF01459739
  11. Rudin, W., Real and Complex Analysis, McGraw-Hill, New York (1987). (1987) Zbl0925.00005MR0924157
  12. Simons, S., 10.1007/BF01430962, Math. Ann. 216 (1975), 225-231. (1975) Zbl0294.46010MR0402470DOI10.1007/BF01430962
  13. Takesaki, M., Theory of Operator Algebras I, Encyclopaedia of Mathematical Sciences 124, Operator Algebras and Non-Commutative Geometry 5, Springer, Berlin (2002). (2002) Zbl0990.46034MR1873025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.