Order of the smallest counterexample to Gallai's conjecture

Fuyuan Chen

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 341-369
  • ISSN: 0011-4642

Abstract

top
In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai’s conjecture is a graph on 12 vertices. We prove that Gallai’s conjecture is true for every connected graph G with α ' ( G ) 5 , which implies that Zamfirescu’s conjecture is true.

How to cite

top

Chen, Fuyuan. "Order of the smallest counterexample to Gallai's conjecture." Czechoslovak Mathematical Journal 68.2 (2018): 341-369. <http://eudml.org/doc/294227>.

@article{Chen2018,
abstract = {In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai’s conjecture is a graph on 12 vertices. We prove that Gallai’s conjecture is true for every connected graph $G$ with $\alpha ^\{\prime \}(G)\le 5$, which implies that Zamfirescu’s conjecture is true.},
author = {Chen, Fuyuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {longest path; matching number},
language = {eng},
number = {2},
pages = {341-369},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Order of the smallest counterexample to Gallai's conjecture},
url = {http://eudml.org/doc/294227},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Chen, Fuyuan
TI - Order of the smallest counterexample to Gallai's conjecture
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 341
EP - 369
AB - In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai’s conjecture is a graph on 12 vertices. We prove that Gallai’s conjecture is true for every connected graph $G$ with $\alpha ^{\prime }(G)\le 5$, which implies that Zamfirescu’s conjecture is true.
LA - eng
KW - longest path; matching number
UR - http://eudml.org/doc/294227
ER -

References

top
  1. Balister, P., Györi, E., Lehel, J., Schelp, R., 10.1017/S0963548304006145, Comb. Probab. Comput. 13 (2004), 311-317. (2004) Zbl1051.05053MR2056401DOI10.1017/S0963548304006145
  2. Brinkmann, G., Cleemput, N. Van, Private communication, . 
  3. Chen, F., 10.1007/s10587-015-0193-2, Czech. Math. J. 65 (2015), 545-553. (2015) Zbl1363.05129MR3360444DOI10.1007/s10587-015-0193-2
  4. Chen, G., Ehrenmüller, J., Fernandes, C. G., Heise, C. G., Shan, S., Yang, P., Yates, A. N., 10.1016/j.disc.2016.07.023, Discrete Math. 340 (2017), 287-304. (2017) Zbl1351.05123MR3584816DOI10.1016/j.disc.2016.07.023
  5. Rezende, S. F. de, Fernandes, C. G., Martin, D. M., Wakabayashi, Y., 10.1016/j.disc.2013.02.016, Discrete Math. 313 (2013), 1401-1408. (2013) Zbl1279.05041MR3061125DOI10.1016/j.disc.2013.02.016
  6. Gallai, T., Problem 4, Theory of Graphs. Proceedings of the colloquium held at Tihany, Hungary, September 1966 P. Erdös, G. Katona Academic Press, New York (1968). (1968) Zbl0155.00201MR0232693
  7. Klavžar, S., Petkovšek, M., Graphs with nonempty intersection of longest paths, Ars Comb. 29 (1990), 43-52. (1990) Zbl0714.05037MR1046093
  8. Petersen, J., 10.1007/BF02392606, Acta Math. 15 (1891), 193-220 German 9999JFM99999 23.0115.03. (1891) MR1554815DOI10.1007/BF02392606
  9. Walther, H., 10.1016/S0021-9800(69)80098-0, J. Comb. Theory 6 (1969), 1-6 German. (1969) Zbl0184.27504MR0236054DOI10.1016/S0021-9800(69)80098-0
  10. Walther, H., Voss, H. J., Über Kreise in Graphen, VEB Deutscher Verlag der Wissenschaften, Berlin (1974), German. (1974) Zbl0288.05101MR0539852
  11. Zamfirescu, T. I., L’histoire et l’etat présent des bornes connues pour P k j , C k j , P ¯ k j et C ¯ k j , Cah. Cent. Étud. Rech. Opér. 17 (1975), 427-439 French. (1975) Zbl0313.05117MR0401544
  12. Zamfirescu, T. I., 10.7146/math.scand.a-11630, Math. Scand. 38 (1976), 211-239. (1976) Zbl0337.05127MR0429645DOI10.7146/math.scand.a-11630

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.