Unicyclic graphs with bicyclic inverses
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 1133-1143
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPanda, Swarup Kumar. "Unicyclic graphs with bicyclic inverses." Czechoslovak Mathematical Journal 67.4 (2017): 1133-1143. <http://eudml.org/doc/294230>.
@article{Panda2017,
abstract = {A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^\{-1\}$ via a particular type of similarity. Let $\mathcal \{H\}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal \{H\}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal \{H\}$ which possess bicyclic inverses.},
author = {Panda, Swarup Kumar},
journal = {Czechoslovak Mathematical Journal},
keywords = {adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching},
language = {eng},
number = {4},
pages = {1133-1143},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unicyclic graphs with bicyclic inverses},
url = {http://eudml.org/doc/294230},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Panda, Swarup Kumar
TI - Unicyclic graphs with bicyclic inverses
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1133
EP - 1143
AB - A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal {H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal {H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal {H}$ which possess bicyclic inverses.
LA - eng
KW - adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching
UR - http://eudml.org/doc/294230
ER -
References
top- Akbari, S., Kirkland, S. J., 10.1016/j.laa.2006.10.017, Linear Algebra Appl. 421 (2007), 3-15. (2007) Zbl1108.05060MR2290681DOI10.1016/j.laa.2006.10.017
- Barik, S., Neumann, M., Pati, S., 10.1080/03081080600792897, Linear Multilinear Algebra 54 (2006), 453-465. (2006) Zbl1119.05064MR2259602DOI10.1080/03081080600792897
- Buckley, F., Doty, L. L., Harary, F., 10.1002/net.3230180302, Networks 18 (1988), 151-157. (1988) Zbl0646.05061MR0953918DOI10.1002/net.3230180302
- Cvetković, D. M., Gutman, I., Simić, S. K., On self-pseudo-inverse graphs, Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. Fiz. (1978), 602-633, (1979), 111-117. (1979) Zbl0437.05047MR0580431
- Frucht, R., Harary, F., 10.1007/BF01844162, Aequationes Mathematicae 4 (1970), 322-325. (1970) Zbl0198.29302MR0281659DOI10.1007/BF01844162
- Godsil, C. D., 10.1007/BF02579440, Combinatorica 5 (1985), 33-39. (1985) Zbl0578.05049MR0803237DOI10.1007/BF02579440
- Harary, F., 10.1307/mmj/1028989917, Mich. Math. J. 2 (1953), 143-146. (1953) Zbl0056.42103MR0067468DOI10.1307/mmj/1028989917
- Harary, F., Minc, H., 10.2307/2689442, Math. Mag. 49 (1976), 91-92. (1976) Zbl0321.15008MR0396629DOI10.2307/2689442
- Panda, S. K., Pati, S., 10.13001/1081-3810.2865, Electron. J. Linear Algebra 29 (2015), 89-101. (2015) Zbl1323.05107MR3414587DOI10.13001/1081-3810.2865
- Panda, S. K., Pati, S., 10.1080/03081087.2015.1091434, Linear Multilinear Algebra 64 (2016), 1445-1459. (2016) Zbl1341.05216MR3490639DOI10.1080/03081087.2015.1091434
- Pavlíková, S., Krč-Jediný, J., 10.1080/03081089008818034, Linear Multilinear Algebra 28 (1990), 93-109. (1990) Zbl0745.05018MR1077739DOI10.1080/03081089008818034
- Simion, R., Cao, D.-S., 10.1007/BF02122687, Combinatorica 9 (1989), 85-89. (1989) Zbl0688.05056MR1010303DOI10.1007/BF02122687
- Tifenbach, R. M., 10.1016/j.laa.2011.05.010, Linear Algebra Appl. 435 (2011), 3151-3167. (2011) Zbl1226.05170MR2831603DOI10.1016/j.laa.2011.05.010
- Tifenbach, R. M., Kirkland, S. J., 10.1016/j.laa.2009.03.032, Linear Algebra Appl. 431 (2009), 792-807. (2009) Zbl1226.05171MR2535551DOI10.1016/j.laa.2009.03.032
- Yates, K., 10.1016/b978-0-12-768850-3.x5001-9, Academic Press (1978). (1978) DOI10.1016/b978-0-12-768850-3.x5001-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.