Unicyclic graphs with bicyclic inverses

Swarup Kumar Panda

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 4, page 1133-1143
  • ISSN: 0011-4642

Abstract

top
A graph is nonsingular if its adjacency matrix A ( G ) is nonsingular. The inverse of a nonsingular graph G is a graph whose adjacency matrix is similar to A ( G ) - 1 via a particular type of similarity. Let denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in which possess unicyclic inverses. We present a characterization of unicyclic graphs in which possess bicyclic inverses.

How to cite

top

Panda, Swarup Kumar. "Unicyclic graphs with bicyclic inverses." Czechoslovak Mathematical Journal 67.4 (2017): 1133-1143. <http://eudml.org/doc/294230>.

@article{Panda2017,
abstract = {A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^\{-1\}$ via a particular type of similarity. Let $\mathcal \{H\}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal \{H\}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal \{H\}$ which possess bicyclic inverses.},
author = {Panda, Swarup Kumar},
journal = {Czechoslovak Mathematical Journal},
keywords = {adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching},
language = {eng},
number = {4},
pages = {1133-1143},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unicyclic graphs with bicyclic inverses},
url = {http://eudml.org/doc/294230},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Panda, Swarup Kumar
TI - Unicyclic graphs with bicyclic inverses
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1133
EP - 1143
AB - A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal {H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal {H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal {H}$ which possess bicyclic inverses.
LA - eng
KW - adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching
UR - http://eudml.org/doc/294230
ER -

References

top
  1. Akbari, S., Kirkland, S. J., 10.1016/j.laa.2006.10.017, Linear Algebra Appl. 421 (2007), 3-15. (2007) Zbl1108.05060MR2290681DOI10.1016/j.laa.2006.10.017
  2. Barik, S., Neumann, M., Pati, S., 10.1080/03081080600792897, Linear Multilinear Algebra 54 (2006), 453-465. (2006) Zbl1119.05064MR2259602DOI10.1080/03081080600792897
  3. Buckley, F., Doty, L. L., Harary, F., 10.1002/net.3230180302, Networks 18 (1988), 151-157. (1988) Zbl0646.05061MR0953918DOI10.1002/net.3230180302
  4. Cvetković, D. M., Gutman, I., Simić, S. K., On self-pseudo-inverse graphs, Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. Fiz. (1978), 602-633, (1979), 111-117. (1979) Zbl0437.05047MR0580431
  5. Frucht, R., Harary, F., 10.1007/BF01844162, Aequationes Mathematicae 4 (1970), 322-325. (1970) Zbl0198.29302MR0281659DOI10.1007/BF01844162
  6. Godsil, C. D., 10.1007/BF02579440, Combinatorica 5 (1985), 33-39. (1985) Zbl0578.05049MR0803237DOI10.1007/BF02579440
  7. Harary, F., 10.1307/mmj/1028989917, Mich. Math. J. 2 (1953), 143-146. (1953) Zbl0056.42103MR0067468DOI10.1307/mmj/1028989917
  8. Harary, F., Minc, H., 10.2307/2689442, Math. Mag. 49 (1976), 91-92. (1976) Zbl0321.15008MR0396629DOI10.2307/2689442
  9. Panda, S. K., Pati, S., 10.13001/1081-3810.2865, Electron. J. Linear Algebra 29 (2015), 89-101. (2015) Zbl1323.05107MR3414587DOI10.13001/1081-3810.2865
  10. Panda, S. K., Pati, S., 10.1080/03081087.2015.1091434, Linear Multilinear Algebra 64 (2016), 1445-1459. (2016) Zbl1341.05216MR3490639DOI10.1080/03081087.2015.1091434
  11. Pavlíková, S., Krč-Jediný, J., 10.1080/03081089008818034, Linear Multilinear Algebra 28 (1990), 93-109. (1990) Zbl0745.05018MR1077739DOI10.1080/03081089008818034
  12. Simion, R., Cao, D.-S., 10.1007/BF02122687, Combinatorica 9 (1989), 85-89. (1989) Zbl0688.05056MR1010303DOI10.1007/BF02122687
  13. Tifenbach, R. M., 10.1016/j.laa.2011.05.010, Linear Algebra Appl. 435 (2011), 3151-3167. (2011) Zbl1226.05170MR2831603DOI10.1016/j.laa.2011.05.010
  14. Tifenbach, R. M., Kirkland, S. J., 10.1016/j.laa.2009.03.032, Linear Algebra Appl. 431 (2009), 792-807. (2009) Zbl1226.05171MR2535551DOI10.1016/j.laa.2009.03.032
  15. Yates, K., 10.1016/b978-0-12-768850-3.x5001-9, Academic Press (1978). (1978) DOI10.1016/b978-0-12-768850-3.x5001-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.