Fraïssé structures and a conjecture of Furstenberg

Dana Bartošová; Andy Zucker

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 1, page 1-24
  • ISSN: 0010-2628

Abstract

top
We study problems concerning the Samuel compactification of the automorphism group of a countable first-order structure. A key motivating question is a problem of Furstenberg and a counter-conjecture by Pestov regarding the difference between S ( G ) , the Samuel compactification, and E ( M ( G ) ) , the enveloping semigroup of the universal minimal flow. We resolve Furstenberg’s problem for several automorphism groups and give a detailed study in the case of G = S , leading us to define and investigate several new types of ultrafilters on a countable set.

How to cite

top

Bartošová, Dana, and Zucker, Andy. "Fraïssé structures and a conjecture of Furstenberg." Commentationes Mathematicae Universitatis Carolinae 60.1 (2019): 1-24. <http://eudml.org/doc/294231>.

@article{Bartošová2019,
abstract = {We study problems concerning the Samuel compactification of the automorphism group of a countable first-order structure. A key motivating question is a problem of Furstenberg and a counter-conjecture by Pestov regarding the difference between $S(G)$, the Samuel compactification, and $E(M(G))$, the enveloping semigroup of the universal minimal flow. We resolve Furstenberg’s problem for several automorphism groups and give a detailed study in the case of $G= S_\infty $, leading us to define and investigate several new types of ultrafilters on a countable set.},
author = {Bartošová, Dana, Zucker, Andy},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fraïssé structures; enveloping semigroups; universal minimal flow},
language = {eng},
number = {1},
pages = {1-24},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fraïssé structures and a conjecture of Furstenberg},
url = {http://eudml.org/doc/294231},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Bartošová, Dana
AU - Zucker, Andy
TI - Fraïssé structures and a conjecture of Furstenberg
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 1
SP - 1
EP - 24
AB - We study problems concerning the Samuel compactification of the automorphism group of a countable first-order structure. A key motivating question is a problem of Furstenberg and a counter-conjecture by Pestov regarding the difference between $S(G)$, the Samuel compactification, and $E(M(G))$, the enveloping semigroup of the universal minimal flow. We resolve Furstenberg’s problem for several automorphism groups and give a detailed study in the case of $G= S_\infty $, leading us to define and investigate several new types of ultrafilters on a countable set.
LA - eng
KW - Fraïssé structures; enveloping semigroups; universal minimal flow
UR - http://eudml.org/doc/294231
ER -

References

top
  1. Ajtai M., Komlós J., Szemerédi E., 10.1016/0097-3165(80)90030-8, J. Combin. Theory Ser. A 29 (1980), no. 3, 354–360. MR0600598DOI10.1016/0097-3165(80)90030-8
  2. Auslander J., Minimal Flows and Their Extensions, North-Holland Mathematics Studies, 153, Mathematical Notes, 122, North-Holland Publishing, Amsterdam, 1988. MR0956049
  3. Baranyai Z., On the factorization of the complete uniform hypergraph, Infinite and Finite Sets, Colloq. dedicated to P. Erdős on his 60th birthday, Keszthely, 1973; Colloq. Math. Soc. János Bōlyai 10 (1975), 91–108. MR0416986
  4. Bartošová D., Topological Dynamics of Automorphism Groups of ω -homogeneous Structures via Near Ultrafilters, Ph.D. Thesis, University of Toronto, Toronto, 2013. MR3312905
  5. Ben Yaacov I., Melleray J., Tsankov T., 10.1007/s00039-017-0398-7, Geom. Funct. Anal. 27 (2017), no. 1, 67–77. MR3613453DOI10.1007/s00039-017-0398-7
  6. Booth D., 10.1016/0003-4843(70)90005-7, Ann. Math. Logic 2 (1970), no. 1, 1–24. MR0277371DOI10.1016/0003-4843(70)90005-7
  7. Ellis R., Lectures on Topological Dynamics, W. A. Benjamin, New York, 1969. Zbl0193.51502MR0267561
  8. Furstenberg H., 10.1007/BF01692494, Math. Systems Theory 1 (1967), 1–49. MR0213508DOI10.1007/BF01692494
  9. Glasner E., Tsankov T., Weiss B., Zucker A., Bernoulli disjointness, available at arXiv:1901.03406v1 [math.DS] (2019), 26 pages. 
  10. Glasner E., Weiss B., 10.1007/BF02761993, Israel J. Math. 44 (1983), no. 4, 345–360. MR0710239DOI10.1007/BF02761993
  11. Glasner E., Weiss B., 10.1007/PL00012651, Geom. Funct. Anal. 12 (2002), no. 5, 964–988. MR1937832DOI10.1007/PL00012651
  12. Hindman N., Strauss D., Algebra in the Stone–Čech Compactification, Theory and Applications, De Gruyter Textbook, Walter de Gruyter, Berlin, 2012. MR2893605
  13. Kechris A. S., Pestov V. G., Todorcevic S., 10.1007/s00039-005-0503-1, Geom. Funct. Anal. 15 (2005), no. 1, 106–189. MR2140630DOI10.1007/s00039-005-0503-1
  14. Laflamme C., 10.1016/0168-0072(89)90052-3, Ann. Pure Appl. Logic 42 (1989), no. 2, 125–163. MR0996504DOI10.1016/0168-0072(89)90052-3
  15. Melleray J., Nguyen Van Thé L., Tsankov T., 10.1093/imrn/rnv171, Int. Math. Res. Not. IMR 2016 (2016), no. 5, 1285–1307. MR3509926DOI10.1093/imrn/rnv171
  16. Nguyen Van Thé L., More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions, Fund. Math. 222 (2013), no. 1, 19–47. MR3080786
  17. Pestov V. G., 10.1090/S0002-9947-98-02329-0, Trans. Amer. Math. Soc. 350 (1998), no. 10, 4149–4165. Zbl0911.54034MR1608494DOI10.1090/S0002-9947-98-02329-0
  18. Pestov V., Some universal constructions in abstract topological dynamics, Topological Dynamics and Applications, Minneapolis, 1995, Contemp. Math., 215, Amer. Math. Soc., Providence, 1998, pages 83–99. MR1603153
  19. Samuel P., 10.1090/S0002-9947-1948-0025717-6, Trans. Amer. Math. Soc. 64 (1948), 100–132. MR0025717DOI10.1090/S0002-9947-1948-0025717-6
  20. Uspenskij V., Compactifications of topological groups, Proc. of the Ninth Prague Topological Symposium, 2001, Topol. Atlas, North Bay, 2002, pages 331–346. MR1906851
  21. Zucker A., 10.1090/tran6685, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6715–6740. MR3461049DOI10.1090/tran6685
  22. Zucker A., 10.1016/j.topol.2017.03.009, Topology Appl. 223 (2017), 1–12. MR3633730DOI10.1016/j.topol.2017.03.009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.