Fraïssé structures and a conjecture of Furstenberg
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 1, page 1-24
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBartošová, Dana, and Zucker, Andy. "Fraïssé structures and a conjecture of Furstenberg." Commentationes Mathematicae Universitatis Carolinae 60.1 (2019): 1-24. <http://eudml.org/doc/294231>.
@article{Bartošová2019,
abstract = {We study problems concerning the Samuel compactification of the automorphism group of a countable first-order structure. A key motivating question is a problem of Furstenberg and a counter-conjecture by Pestov regarding the difference between $S(G)$, the Samuel compactification, and $E(M(G))$, the enveloping semigroup of the universal minimal flow. We resolve Furstenberg’s problem for several automorphism groups and give a detailed study in the case of $G= S_\infty $, leading us to define and investigate several new types of ultrafilters on a countable set.},
author = {Bartošová, Dana, Zucker, Andy},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fraïssé structures; enveloping semigroups; universal minimal flow},
language = {eng},
number = {1},
pages = {1-24},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fraïssé structures and a conjecture of Furstenberg},
url = {http://eudml.org/doc/294231},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Bartošová, Dana
AU - Zucker, Andy
TI - Fraïssé structures and a conjecture of Furstenberg
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 1
SP - 1
EP - 24
AB - We study problems concerning the Samuel compactification of the automorphism group of a countable first-order structure. A key motivating question is a problem of Furstenberg and a counter-conjecture by Pestov regarding the difference between $S(G)$, the Samuel compactification, and $E(M(G))$, the enveloping semigroup of the universal minimal flow. We resolve Furstenberg’s problem for several automorphism groups and give a detailed study in the case of $G= S_\infty $, leading us to define and investigate several new types of ultrafilters on a countable set.
LA - eng
KW - Fraïssé structures; enveloping semigroups; universal minimal flow
UR - http://eudml.org/doc/294231
ER -
References
top- Ajtai M., Komlós J., Szemerédi E., 10.1016/0097-3165(80)90030-8, J. Combin. Theory Ser. A 29 (1980), no. 3, 354–360. MR0600598DOI10.1016/0097-3165(80)90030-8
- Auslander J., Minimal Flows and Their Extensions, North-Holland Mathematics Studies, 153, Mathematical Notes, 122, North-Holland Publishing, Amsterdam, 1988. MR0956049
- Baranyai Z., On the factorization of the complete uniform hypergraph, Infinite and Finite Sets, Colloq. dedicated to P. Erdős on his 60th birthday, Keszthely, 1973; Colloq. Math. Soc. János Bōlyai 10 (1975), 91–108. MR0416986
- Bartošová D., Topological Dynamics of Automorphism Groups of -homogeneous Structures via Near Ultrafilters, Ph.D. Thesis, University of Toronto, Toronto, 2013. MR3312905
- Ben Yaacov I., Melleray J., Tsankov T., 10.1007/s00039-017-0398-7, Geom. Funct. Anal. 27 (2017), no. 1, 67–77. MR3613453DOI10.1007/s00039-017-0398-7
- Booth D., 10.1016/0003-4843(70)90005-7, Ann. Math. Logic 2 (1970), no. 1, 1–24. MR0277371DOI10.1016/0003-4843(70)90005-7
- Ellis R., Lectures on Topological Dynamics, W. A. Benjamin, New York, 1969. Zbl0193.51502MR0267561
- Furstenberg H., 10.1007/BF01692494, Math. Systems Theory 1 (1967), 1–49. MR0213508DOI10.1007/BF01692494
- Glasner E., Tsankov T., Weiss B., Zucker A., Bernoulli disjointness, available at arXiv:1901.03406v1 [math.DS] (2019), 26 pages.
- Glasner E., Weiss B., 10.1007/BF02761993, Israel J. Math. 44 (1983), no. 4, 345–360. MR0710239DOI10.1007/BF02761993
- Glasner E., Weiss B., 10.1007/PL00012651, Geom. Funct. Anal. 12 (2002), no. 5, 964–988. MR1937832DOI10.1007/PL00012651
- Hindman N., Strauss D., Algebra in the Stone–Čech Compactification, Theory and Applications, De Gruyter Textbook, Walter de Gruyter, Berlin, 2012. MR2893605
- Kechris A. S., Pestov V. G., Todorcevic S., 10.1007/s00039-005-0503-1, Geom. Funct. Anal. 15 (2005), no. 1, 106–189. MR2140630DOI10.1007/s00039-005-0503-1
- Laflamme C., 10.1016/0168-0072(89)90052-3, Ann. Pure Appl. Logic 42 (1989), no. 2, 125–163. MR0996504DOI10.1016/0168-0072(89)90052-3
- Melleray J., Nguyen Van Thé L., Tsankov T., 10.1093/imrn/rnv171, Int. Math. Res. Not. IMR 2016 (2016), no. 5, 1285–1307. MR3509926DOI10.1093/imrn/rnv171
- Nguyen Van Thé L., More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions, Fund. Math. 222 (2013), no. 1, 19–47. MR3080786
- Pestov V. G., 10.1090/S0002-9947-98-02329-0, Trans. Amer. Math. Soc. 350 (1998), no. 10, 4149–4165. Zbl0911.54034MR1608494DOI10.1090/S0002-9947-98-02329-0
- Pestov V., Some universal constructions in abstract topological dynamics, Topological Dynamics and Applications, Minneapolis, 1995, Contemp. Math., 215, Amer. Math. Soc., Providence, 1998, pages 83–99. MR1603153
- Samuel P., 10.1090/S0002-9947-1948-0025717-6, Trans. Amer. Math. Soc. 64 (1948), 100–132. MR0025717DOI10.1090/S0002-9947-1948-0025717-6
- Uspenskij V., Compactifications of topological groups, Proc. of the Ninth Prague Topological Symposium, 2001, Topol. Atlas, North Bay, 2002, pages 331–346. MR1906851
- Zucker A., 10.1090/tran6685, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6715–6740. MR3461049DOI10.1090/tran6685
- Zucker A., 10.1016/j.topol.2017.03.009, Topology Appl. 223 (2017), 1–12. MR3633730DOI10.1016/j.topol.2017.03.009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.