Regularity problem for one class of nonlinear parabolic systems with non-smooth in time principal matrices
Arina A. Arkhipova; Jana Stará
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 2, page 231-267
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArkhipova, Arina A., and Stará, Jana. "Regularity problem for one class of nonlinear parabolic systems with non-smooth in time principal matrices." Commentationes Mathematicae Universitatis Carolinae 60.2 (2019): 231-267. <http://eudml.org/doc/294240>.
@article{Arkhipova2019,
abstract = {Partial regularity of solutions to a class of second order nonlinear parabolic systems with non-smooth in time principal matrices is proved in the paper. The coefficients are assumed to be measurable and bounded in the time variable and VMO-smooth in the space variables uniformly with respect to time. To prove the result, we apply the so-called $A(t)$-caloric approximation method. The method was applied by the authors earlier to study regularity of quasilinear systems.},
author = {Arkhipova, Arina A., Stará, Jana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonlinear parabolic systems; regularity problem},
language = {eng},
number = {2},
pages = {231-267},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Regularity problem for one class of nonlinear parabolic systems with non-smooth in time principal matrices},
url = {http://eudml.org/doc/294240},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Arkhipova, Arina A.
AU - Stará, Jana
TI - Regularity problem for one class of nonlinear parabolic systems with non-smooth in time principal matrices
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 2
SP - 231
EP - 267
AB - Partial regularity of solutions to a class of second order nonlinear parabolic systems with non-smooth in time principal matrices is proved in the paper. The coefficients are assumed to be measurable and bounded in the time variable and VMO-smooth in the space variables uniformly with respect to time. To prove the result, we apply the so-called $A(t)$-caloric approximation method. The method was applied by the authors earlier to study regularity of quasilinear systems.
LA - eng
KW - nonlinear parabolic systems; regularity problem
UR - http://eudml.org/doc/294240
ER -
References
top- Arkhipova A. A., On the regularity of the solutions of the Neumann problem for quasilinear parabolic systems, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 5, 3–25 (Russian); translation in Russian Acad. Sci. Izv. Math. 45 (1995), no. 2, 231–253. MR1307308
- Arkhipova A. A., Reverse Hölder inequalities with boundary integrals and -estimates for solutions of nonlinear elliptic and parabolic boundary value problems, Nonlinear Evolution Equations, Amer. Math. Soc. Transl. Ser. 2, 164, Adv. Math. Sci., 22, Amer. Math. Soc. (1995), 15–42. MR1334137
- Arkhipova A. A., 10.1007/s00229-016-0838-y, Manuscripta Math. 151 (2016), no. 3–4, 519–548. MR3556832DOI10.1007/s00229-016-0838-y
- Arkhipova A. A., 10.1134/S0965542517030034, Comput. Math. Math. Phys. 57 (2017), no. 3, 476–496. MR3636034DOI10.1134/S0965542517030034
- Arkhipova A. A., Stará J., Boundary partial regularity for solutions of quasilinear parabolic systems with non smooth in time principal matrix, Nonlinear Anal. 120 (2015), 236–261. MR3348057
- Arkhipova A. A., Stará J., 10.1515/forum-2015-0222, Forum Math. 29 (2017), no. 5, 1039–1064. MR3692026DOI10.1515/forum-2015-0222
- Arkhipova A. A., Stará J., Regularity problem for -order quasilinear parabolic systems with non smooth in time principal matrix. -caloric approximation method, Topol. Methods Nonlinear Anal. 52 (2018), no. 1, 111–146. MR3867982
- Arkhipova A. A., Stará J., John O., Partial regularity for solutions of quasilinear parabolic systems with nonsmooth in time principal matrix, Nonlinear Anal. 95 (2014), 421–435. MR3130534
- Bögelein V., Duzaar F., Mingione G., 10.1016/j.anihpc.2009.09.003, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 1, 201–255. MR2580509DOI10.1016/j.anihpc.2009.09.003
- Campanato S., 10.1007/BF02415082, Ann. Mat. Pura Appl. (4) 73 (1966), 55–102 (Italian). MR0213737DOI10.1007/BF02415082
- Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl. (4) 137 (1984), 83–122. MR0772253
- Diening L., Lengeler D., Stroffolini B., Verde A., 10.1137/120870554, SIAM J. Math. Anal. 44 (2012), no. 5, 3594–3616. MR3023424DOI10.1137/120870554
- Diening L., Schwarzacher S., Stroffolini B., Verde A., 10.1007/s00526-017-1209-6, Calc. Var. Partial Differential Equations 56 (2017), no. 4, Art. 120, 27 pages. MR3672391DOI10.1007/s00526-017-1209-6
- Dong H., Kim D., Parabolic and elliptic systems with VMO coefficients, Methods Appl. Anal. 16 (2009), no. 3, 365–388. MR2650802
- Dong H., Kim D., 10.1080/03605302.2011.571746, Communic. Partial Differential Equations 36 (2011), no. 10, 1750–1777. MR2832162DOI10.1080/03605302.2011.571746
- Dong H., Kim D., 10.1007/s00205-010-0345-3, Arch. Ration. Mech. Anal. 199 (2011), no. 3, 889–941. MR2771670DOI10.1007/s00205-010-0345-3
- Duzaar F., Grotowski J. F., 10.1007/s002290070007, Manuscripta Math. 103 (2000), no. 3, 267–298. MR1802484DOI10.1007/s002290070007
- Duzaar F., Mingione G., 10.1016/j.anihpc.2004.10.011, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 6, 705–751. MR2172857DOI10.1016/j.anihpc.2004.10.011
- Duzaar F., Steffen K., Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math. 546 (2002), 73–138. MR1900994
- Gehring F. W., 10.1007/BF02392268, Acta Math. 130 (1973), 265–277. MR0402038DOI10.1007/BF02392268
- Giaquinta M., Giusti E., 10.1007/BF02414914, Ann. Mat. Pura Appl. (4) 97 (1973), 253–266. MR0338568DOI10.1007/BF02414914
- Giaquinta M., Struwe M., 10.1007/BF01215058, Math. Z. 179 (1982), no. 4, 437–451. MR0652852DOI10.1007/BF01215058
- Kinnunen J., Lewis J. L., 10.1215/S0012-7094-00-10223-2, Duke Math. J. 102 (2000), no. 2, 253–271. MR1749438DOI10.1215/S0012-7094-00-10223-2
- Krylov N. V., 10.1080/03605300600781626, Comm. Partial Differential Equations 32 (2007), no. 1–3, 453–475. MR2304157DOI10.1080/03605300600781626
- Krylov N. V., 10.1090/gsm/096, Graduate Studies in Mathematics, 96, American Mathematical Society, Providence, 2008. MR2435520DOI10.1090/gsm/096
- Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., 10.1090/mmono/023, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, 1968. MR0241822DOI10.1090/mmono/023
- Mingione G., 10.1007/s00205-002-0231-8, Arch. Ration. Mech. Anal. 166 (2003), no. 4, 287–301. MR1961442DOI10.1007/s00205-002-0231-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.