Realization of nonlinear input-output equations in controller canonical form
Kybernetika (2018)
- Volume: 54, Issue: 4, page 736-747
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKaldmäe, Arvo, and Kotta, Ülle. "Realization of nonlinear input-output equations in controller canonical form." Kybernetika 54.4 (2018): 736-747. <http://eudml.org/doc/294243>.
@article{Kaldmäe2018,
abstract = {In this paper necessary and sufficient conditions are given which guarantee that there exists a realization of a set of nonlinear higher order differential input-output equations in the controller canonical form. Two cases are studied, corresponding respectively to linear and nonlinear output functions. The conditions are formulated in terms of certain sequence of vector spaces of differential 1-forms. The proofs suggest how to construct the transformations, necessary to obtain the specific state space realizations. Multiple examples are added, which describe different scenarios.},
author = {Kaldmäe, Arvo, Kotta, Ülle},
journal = {Kybernetika},
keywords = {realization; nonlinear systems; algebraic methods},
language = {eng},
number = {4},
pages = {736-747},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Realization of nonlinear input-output equations in controller canonical form},
url = {http://eudml.org/doc/294243},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Kaldmäe, Arvo
AU - Kotta, Ülle
TI - Realization of nonlinear input-output equations in controller canonical form
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 736
EP - 747
AB - In this paper necessary and sufficient conditions are given which guarantee that there exists a realization of a set of nonlinear higher order differential input-output equations in the controller canonical form. Two cases are studied, corresponding respectively to linear and nonlinear output functions. The conditions are formulated in terms of certain sequence of vector spaces of differential 1-forms. The proofs suggest how to construct the transformations, necessary to obtain the specific state space realizations. Multiple examples are added, which describe different scenarios.
LA - eng
KW - realization; nonlinear systems; algebraic methods
UR - http://eudml.org/doc/294243
ER -
References
top- Aström, K. J., Murray, R. M., 10.1086/596297, Princeton University Press, 2008. MR2400446DOI10.1086/596297
- Bartosiewicz, Z., Kotta, Ü., Tõnso, M., Wyrwas, M., 10.3934/mcrf.2016002, Math. Control Relat. Fields 6 (2016), 217-250. MR3510298DOI10.3934/mcrf.2016002
- Belikov, J., Kotta, P., Kotta, Ü., Tõnso, M., 10.1109/cdc.2012.6427109, In: 51st IEEE Conference on Decision and Control, Hawaii 2012, pp. 1253-1258. DOI10.1109/cdc.2012.6427109
- Belikov, J., Kotta, Ü., Tõnso, M., 10.1109/cdc.2012.6427109, IEEE Trans. Automat. Control 59 (2014), 256-261. MR3163347DOI10.1109/cdc.2012.6427109
- Belikov, J., Kotta, Ü., Tõnso, M., 10.1016/j.ejcon.2015.01.006, Eur. J. Control 23 (2015), 48-54. MR3339645DOI10.1016/j.ejcon.2015.01.006
- Bronstein, M., Petkovsek, M., 10.1016/0304-3975(95)00173-5, Theoret. Comput. Sci. 157 (1996), 3-33. MR1383396DOI10.1016/0304-3975(95)00173-5
- Conte, G., Moog, C. H., Perdon, A. M., 10.1007/978-1-84628-595-0, Springer, London 2007. MR2305378DOI10.1007/978-1-84628-595-0
- Crouch, P. E., Lamnabhi-Lagarrigue, F., 10.1007/bfb0042209, In: Analysis and Optimization of Systems, Springer, Berlin, Heidelberg 1988, pp 138-149. MR0956266DOI10.1007/bfb0042209
- Delaleau, E., Respondek, W., Lowering the orders of derivatives of controls in generalized state space systems., J. Math. Systems, Estimation, Control 5 (1995), 1-27. Zbl0852.93016MR1651823
- Halas, M., Kawano, Y., Moog, C. H., Ohtsuka, T., 10.3182/20140824-6-za-1003.00990, In: 19th IFAC World Congress, Cape Town 2014, pp. 9480-9485. DOI10.3182/20140824-6-za-1003.00990
- Halas, M., Kotta, Ü., 10.1080/00207179.2011.651748, Int. J. Control 85 (2012), 320-331. MR2881269DOI10.1080/00207179.2011.651748
- Kolchin, E. R., Differential Algebra and Algebraic Groups., Academic Press, New York 1973. MR0568864
- Kotta, Ü., Mullari, T., Equivalence of realizability conditions for nonlinear control systems., Proc. Est. Acad. Sci. Physics. Math. 55 (2006), 24-42. MR2211488
- Kotta, Ü., Sadegh, N., 10.1076/mcmd.8.1.21.8340, Math. Comput. Model. Dyn. Syst. 8 (2002), 21-32. DOI10.1076/mcmd.8.1.21.8340
- Morales, V. L., Plestan, F., Glumineau, A., Linearization by completely generalized input-output injection., Kybernetika 35 (1999), 793-802. MR1747977
- Plestan, F., Glumineau, A., 10.1016/s0167-6911(97)00025-x, Systems Control Lett. 31 (1997), 115-128. MR1461807DOI10.1016/s0167-6911(97)00025-x
- Sontag, E. D., 10.1007/978-1-4612-0577-7, Springer-Verlag, New York 1998. Zbl0945.93001MR1640001DOI10.1007/978-1-4612-0577-7
- Tõnso, M., Kotta, Ü., 10.1007/978-3-642-04772-5_82, In: 12th International Conference on Computer Aided Systems Theory, Gran Canaria 2009, pp. 633-640. DOI10.1007/978-3-642-04772-5_82
- Schaft, A. J. van der, 10.1007/bf01704916, Math. Systems Theory 19 (1987), 239-275. MR0871787DOI10.1007/bf01704916
- Zhang, J., Moog, C. H., Xia, X., Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra., Kybernetika 46 (2010), 799-830. Zbl1205.93030MR2778926
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.