Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra

Jiangfeng Zhang; Claude H. Moog; Xiao Hua Xia

Kybernetika (2010)

  • Volume: 46, Issue: 5, page 799-830
  • ISSN: 0023-5954

Abstract

top
In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.

How to cite

top

Zhang, Jiangfeng, Moog, Claude H., and Xia, Xiao Hua. "Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra." Kybernetika 46.5 (2010): 799-830. <http://eudml.org/doc/196510>.

@article{Zhang2010,
abstract = {In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.},
author = {Zhang, Jiangfeng, Moog, Claude H., Xia, Xiao Hua},
journal = {Kybernetika},
keywords = {realization; nonlinear system; differential ideal; differential form; realization; nonlinear system; differential ideal; differential form},
language = {eng},
number = {5},
pages = {799-830},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra},
url = {http://eudml.org/doc/196510},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Zhang, Jiangfeng
AU - Moog, Claude H.
AU - Xia, Xiao Hua
TI - Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 5
SP - 799
EP - 830
AB - In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.
LA - eng
KW - realization; nonlinear system; differential ideal; differential form; realization; nonlinear system; differential ideal; differential form
UR - http://eudml.org/doc/196510
ER -

References

top
  1. Aranda-Bricaire, E., Moog, C. H., Pomet, J.-B., 10.1109/9.362886, IEEE Trans. Automat. Control 40 (1995), 127–132. (1995) MR1344331DOI10.1109/9.362886
  2. Bartosiewicz, Z., 10.1093/imamci/2.1.71, IMA J. Math. Control Inform. Theory 2 (1985), 71–80. (1985) Zbl0637.93013DOI10.1093/imamci/2.1.71
  3. Callier, F. M., Desoer, C. A., Linear System Theory, Springer, New York 1991. (1991) Zbl0744.93002MR1123479
  4. Celle, F., Gauthier, J. P., 10.1007/BF01704915, Math. Systems Theory 19 (1987), 227–237. (1987) Zbl0638.93016MR0871786DOI10.1007/BF01704915
  5. Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M., Analysis, Manifolds and Physics, Part I: Basics, Elsevier Science Publishers, Amsterdam 1981. (1981) MR0685274
  6. Conte, G., Moog, C. H., Perdon, A. M., Nonlinear Control Systems, Lecture Notes in Control and Inform. Sci. 242, Springer, New York 1990. (1990) 
  7. Conte, G., Perdon, A. M., Moog, C. H., 10.1109/9.231468, IEEE Trans. Automat. Control 38 (1993), 1120–1124. (1993) Zbl0800.93539MR1235235DOI10.1109/9.231468
  8. Cox, D. A., Little, J. B., O’Shea, D., Ideals, varieties, and algorithms, Second edition. Springer, New York 1996. (1996) 
  9. Crouch, P. E., Lamnabhi-Lagarrigue, F., State space realizations of nonlinear systems defined by input output differential equations, In: Analysis and Optimization Systems (A. Bensousan and J. L. Lions, eds.), Lecture Notes in Control and Inform. Sci. 111, 138–149. Zbl0675.93031MR0956266
  10. Crouch, P. E., Lamnabhi-Lagarrigue, F., Realizations of input output differential equations, In: Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing II Proceeding MTNS-91, Mita Press 1992. (1992) MR1198030
  11. Crouch, P. E., Lamnabhi-Lagarrigue, F., Pinchon, D., 10.1080/00207179508921576, Internat. J. Control 62 (1995), 941–960. (1995) MR1632926DOI10.1080/00207179508921576
  12. Delaleau, E., Respondek, W., Lowering the orders of derivatives of controls in generalized state space systems, J. Math. Systems Estim. Control 5 (1995), 1–27. (1995) Zbl0852.93016MR1651823
  13. Benedetto, M. C. Di, Grizzle, J., Moog, C. H., 10.1137/0327035, SIAM J. Control Optim. 27 (1989), 658–672. (1989) Zbl0696.93033MR0993292DOI10.1137/0327035
  14. Diop, S., A state elimination procedure for nonlinear systems, In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori,D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 190–198. (1989) Zbl0696.93016MR1229776
  15. Diop, S., Fliess, F., Nonlinear observability, identification, and persistent trajectories, In: Proc. 30th CDC, Brighton 1991. (1991) 
  16. Fliess, M., 10.1090/S0273-0979-1980-14760-6, Bull. Amer. Math. Soc. (N. S.) 2 (1980), 444–446. (1980) Zbl0427.93011MR0561529DOI10.1090/S0273-0979-1980-14760-6
  17. Fliess, M., Some remarks on nonlinear invertibility and dynamic state feedback, In: Theory and Applications of Nonlinear Control Systems, also in: Proc. MTNS’85, (C. Byrnes and A. Lindquist, eds.), North Holland, Amsterdam 1986. (1986) Zbl0601.93028MR0935371
  18. Fliess, M., 10.1016/0167-6911(86)90073-3, Syst. Control Lett. 8 (1986), 147–151. (1986) MR0870352DOI10.1016/0167-6911(86)90073-3
  19. Fliess, M., Automatique et corps différentiels, Forum Math. 1 (1986), 227–238. (1986) MR1005424
  20. Fliess, M., 10.1109/9.58527, IEEE Trans. Autom. Control 35 (1990), 994–1001. (1990) Zbl0724.93010MR1065035DOI10.1109/9.58527
  21. Fliess, M., Kupka, I., 10.1137/0321044, SIAM J. Control Optim. 21 (1983), 721–728. (1983) MR0710997DOI10.1137/0321044
  22. Glad, S. T., Nonlinear state space and input output descriptions using differential polynomials, In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori and D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 182–189. (1989) Zbl0682.93030MR1229775
  23. Halas, M., Huba, M., Symbolic computation for nonlinear systems using quotients over skew polynomial ring, In: 14th Mediterranean Conference on Control and Automation, Ancona 2006. (2006) 
  24. Halas, M., 10.1016/j.automatica.2007.09.008, Automatica 44 (2008), 1181–1190. (2008) MR2531783DOI10.1016/j.automatica.2007.09.008
  25. Hartshorne, R., Algebraic Geometry, Springer, New York 1977. (1977) Zbl0367.14001MR0463157
  26. Hermann, R., Krener, A. J., 10.1109/TAC.1977.1101601, IEEE Trans. Automat. Control 22 (1977), 728–740. (1977) Zbl0396.93015MR0476017DOI10.1109/TAC.1977.1101601
  27. Isidori, A., Nonlinear Control Systems, Third edition. Springer, New York 1995. (1995) Zbl0878.93001MR1410988
  28. Isidori, A., D’Alessandro, P., Ruberti, A., Realization and structure theory of bilinear dynamical systems, SIAM J. Control 13 (1974), 517–535. (1974) MR0424307
  29. Jacobson, N., Basic Algebra I, W. H. Freeman and Company, San Francisco 1974. (1974) Zbl0284.16001MR0356989
  30. Jakubczyk, B., 10.1137/0318034, SIAM J. Control Optim. 18 (1980), 455–471. (1980) Zbl0447.93012MR0579553DOI10.1137/0318034
  31. Jakubczyk, B., Construction of formal and analytic realizations of nonlinear systems, In: Feedback Control of Linear and Nonlinear Systems. Lecture Notes in Control and Inform. Sci. 39, Springer 1982. (1982) Zbl0519.93022MR0837456
  32. Jakubczyk, B., Realization theory for nonlinear systems, three approaches, In: Alg. & Geom. Methods in Nonlin. Control. Theory. Springer 1986. (1986) Zbl0608.93018MR0862316
  33. Kaplansky, I., An Introduction to Differential Algebra, Hermann, Paris 1957. (1957) Zbl0083.03301MR0093654
  34. Kolchin, E. R., Differential Algebra and Algebraic Groups, Academic Press, New York 1973. (1973) Zbl0264.12102MR0568864
  35. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Volume I. John Willey & Sons, New York 1963. (1963) Zbl0119.37502MR1393940
  36. Kotta, U., Kotta, P., Nomm, S., Tonso, M., Irreducibility conditions for continuous-time multi-input multi-output nonlinear systems, In: Proc. 9th International Conference on Control, Automation, Robotics and Vision (ICARCV 2006). Singapore 2006. (2006) 
  37. Kotta, U., Zinober, A. S. I., Liu, P., 10.1016/S0005-1098(01)00144-3, Automatica 37 (2001), 1771–1778. (2001) Zbl1009.93048DOI10.1016/S0005-1098(01)00144-3
  38. Kou, S. R., Elliot, D. L., Tarn, T. J., 10.1016/S0019-9958(73)90508-1, Inform. Control 22 (1973), 89–99. (1973) MR0325192DOI10.1016/S0019-9958(73)90508-1
  39. Krener, A. J., Respondek, W., Nonlinear observers with linearizable error dynamics, SIAM J. Control Optim. 23 (1985), 197–216. (1985) Zbl0569.93035MR0777456
  40. Moog, C. H., Zheng, Y. F., Liu, P., Input-output equivalence of nonlinear systems and their realizations, In: 15th IFAC World Congress on Automatic Control, IFAC, Barcelona 2002. (2002) 
  41. Nijmeijer, H., Schaft, A. van der, Nonlinear Dynamical Control Systems, Springer, New York 1990. (1990) MR1047663
  42. Ore, O., 10.2307/1968245, Ann. Math. 32 (1931), 463–477. (1931) Zbl0001.26601MR1503010DOI10.2307/1968245
  43. Ore, O., Theory of non-commutative polynomials, Ann. Math. 34 (1933), 80–508. (1933) Zbl0007.15101
  44. Ritt, J. F., Differential Algebra, American Mathematical Society, Providence 1950. (1950) Zbl0037.18402MR0035763
  45. Rudolph, J., Viewing input-output system equivalence from differential algebra, J. Math. Systems Estim. Control 4 (1994), 353–383. (1994) Zbl0806.93012MR1298841
  46. Schaft, A. J. van der, 10.1137/0320026, SIAM J. Control Optim. 20 (1982), 338–354. (1982) MR0652211DOI10.1137/0320026
  47. Schaft, A. J. van der, 10.1007/BF01704916, Math. Systems Theory 19 (1987), 239–275. (1987) MR0871787DOI10.1007/BF01704916
  48. Schaft, A. J. van der, Transformations of nonlinear systems under external equivalence, In: New Trends in Nonlinear Control Theory, Lecture Notes in Control and Information Sciences 122, Springer, New York 1989, pp. 33–43. (1989) MR1229763
  49. Schaft, A. J. van der, 10.1016/0167-6911(89)90008-X, Syst. Control Lett. 12 (1989), 151–160. (1989) MR0985565DOI10.1016/0167-6911(89)90008-X
  50. Sontag, E. D., 10.1016/0167-6911(88)90057-6, Syst. Control Lett. 11 (1988), 190–198. (1988) Zbl0657.93010MR0960665DOI10.1016/0167-6911(88)90057-6
  51. Sussmann, H. S., 10.1007/BF01683278, Math. Systems Theory 10 (1977), 263–284. (1977) MR0437158DOI10.1007/BF01683278
  52. Wang, Y., Sontag, E. D., 10.1137/0330060, SIAM J. Control Optim. 30 (1992), 1126–1149. (1992) Zbl0762.93015MR1178655DOI10.1137/0330060
  53. Wang, Y., Sontag, E. D., 10.1515/form.1992.4.299, Forum Math. 4 (1992), 299–322. (1992) Zbl0746.93020MR1164098DOI10.1515/form.1992.4.299
  54. Wang, Y., Sontag, E. D., 10.1137/S0363012993246828, SIAM J. Control Optim. 33 (1995), 1102–1126. (1995) Zbl0830.93015MR1339057DOI10.1137/S0363012993246828
  55. Xia, X., Márquez, L. A., Zagalak, P., Moog, C. H., 10.1016/S0005-1098(02)00051-1, Automatica 38 (2002), 1549–1555. (2002) MR2134034DOI10.1016/S0005-1098(02)00051-1
  56. Zheng, Y., Cao, L., Transfer function description for nonlinear systems, J. East China Normal University (Natural Science) 2 (1995), 5–26. (1995) MR1370603

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.