The virtual element method for eigenvalue problems with potential terms on polytopic meshes
Ondřej Čertík; Francesca Gardini; Gianmarco Manzini; Giuseppe Vacca
Applications of Mathematics (2018)
- Volume: 63, Issue: 3, page 333-365
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topČertík, Ondřej, et al. "The virtual element method for eigenvalue problems with potential terms on polytopic meshes." Applications of Mathematics 63.3 (2018): 333-365. <http://eudml.org/doc/294250>.
@article{Čertík2018,
abstract = {We extend the conforming virtual element method (VEM) to the numerical resolution of eigenvalue problems with potential terms on a polytopic mesh. An important application is that of the Schrödinger equation with a pseudopotential term. This model is a fundamental element in the numerical resolution of more complex problems from the Density Functional Theory. The VEM is based on the construction of the discrete bilinear forms of the variational formulation through certain polynomial projection operators that are directly computable from the degrees of freedom. The method shows a great flexibility with respect to the meshes and provides a correct spectral approximation with optimal convergence rates. This point is discussed from both the theoretical and the numerical viewpoint. The performance of the method is numerically investigated by solving the quantum harmonic oscillator problem with the harmonic potential and a singular eigenvalue problem with zero potential for the first eigenvalues.},
author = {Čertík, Ondřej, Gardini, Francesca, Manzini, Gianmarco, Vacca, Giuseppe},
journal = {Applications of Mathematics},
keywords = {conforming virtual element; eigenvalue problem; Hamiltonian equation; polygonal mesh},
language = {eng},
number = {3},
pages = {333-365},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The virtual element method for eigenvalue problems with potential terms on polytopic meshes},
url = {http://eudml.org/doc/294250},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Čertík, Ondřej
AU - Gardini, Francesca
AU - Manzini, Gianmarco
AU - Vacca, Giuseppe
TI - The virtual element method for eigenvalue problems with potential terms on polytopic meshes
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 333
EP - 365
AB - We extend the conforming virtual element method (VEM) to the numerical resolution of eigenvalue problems with potential terms on a polytopic mesh. An important application is that of the Schrödinger equation with a pseudopotential term. This model is a fundamental element in the numerical resolution of more complex problems from the Density Functional Theory. The VEM is based on the construction of the discrete bilinear forms of the variational formulation through certain polynomial projection operators that are directly computable from the degrees of freedom. The method shows a great flexibility with respect to the meshes and provides a correct spectral approximation with optimal convergence rates. This point is discussed from both the theoretical and the numerical viewpoint. The performance of the method is numerically investigated by solving the quantum harmonic oscillator problem with the harmonic potential and a singular eigenvalue problem with zero potential for the first eigenvalues.
LA - eng
KW - conforming virtual element; eigenvalue problem; Hamiltonian equation; polygonal mesh
UR - http://eudml.org/doc/294250
ER -
References
top- Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65, Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
- Agmon, S., Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies 2, Princeton, Toronto (1965). (1965) Zbl0142.37401MR0178246
- Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L. D., Russo, A., 10.1016/j.camwa.2013.05.015, Comput. Math. Appl. 66 (2013), 376-391. (2013) Zbl1347.65172MR3073346DOI10.1016/j.camwa.2013.05.015
- Antonietti, P. F., Veiga, L. Beirão da, Scacchi, S., Verani, M., 10.1137/15M1008117, SIAM J. Numer. Anal. 54 (2016), 34-56. (2016) Zbl1336.65160MR3439765DOI10.1137/15M1008117
- Antonietti, P. F., Manzini, G., Verani, M., 10.1142/S0218202518500100, Math. Models Methods Appl. Sci. 28 (2018), 387-407. (2018) Zbl1381.65090MR3741104DOI10.1142/S0218202518500100
- Antonietti, P. F., Mascotto, L., Verani, M., 10.1051/m2an/2018007, ESAIM, Math. Model. Numer. Anal. 52 (2018), 337-364. (2018) MR3808163DOI10.1051/m2an/2018007
- Artioli, E., Miranda, S. De, Lovadina, C., Patruno, L., 10.1016/j.cma.2017.06.036, Comput. Meth. Appl. Mech. Eng. 325 (2017), 155-174. (2017) MR3693423DOI10.1016/j.cma.2017.06.036
- Dios, B. Ayuso de, Lipnikov, K., Manzini, G., 10.1051/m2an/2015090, ESAIM, Math. Model. Numer. Anal. 50 (2016), 879-904. (2016) Zbl1343.65140MR3507277DOI10.1051/m2an/2015090
- Babuška, I., Osborn, J., 10.1016/s1570-8659(05)80042-0, Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1) P. G. Ciarlet North-Holland, Amsterdam (1991), 641-787. (1991) Zbl0875.65087MR1115240DOI10.1016/s1570-8659(05)80042-0
- Bader, R. F. W., 10.1021/cr00005a013, Chem. Rev. 91 (1991), 893-928. (1991) DOI10.1021/cr00005a013
- Veiga, L. Beirão da, Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., Russo, A., 10.1142/S0218202512500492, Math. Models Methods Appl. Sci. 23 (2013), 199-214. (2013) Zbl06144424MR2997471DOI10.1142/S0218202512500492
- Veiga, L. Beirão da, Brezzi, F., Dassi, F., Marini, L. D., Russo, A., 10.1016/j.cma.2017.08.013, Comput. Methods Appl. Mech. Eng. 327 (2017), 173-195. (2017) MR3725767DOI10.1016/j.cma.2017.08.013
- Veiga, L. Beirão da, Brezzi, F., Dassi, F., Marini, L. D., Russo, A., 10.1007/s11401-018-1066-4, Chin. Ann. Math., Ser. B 39 (2018), 315-334. (2018) Zbl06877227MR3757651DOI10.1007/s11401-018-1066-4
- Veiga, L. Beirão da, Brezzi, F., Marini, L. D., Russo, A., 10.1142/S021820251440003X, Math. Models Methods Appl. Sci. 24 (2014), 1541-1573. (2014) Zbl1291.65336MR3200242DOI10.1142/S021820251440003X
- Veiga, L. Beirão da, Brezzi, F., Marini, L. D., Russo, A., 10.1142/S0218202516500160, Math. Models Methods Appl. Sci. 26 (2016), 729-750. (2016) Zbl1332.65162MR3460621DOI10.1142/S0218202516500160
- Veiga, L. Beirão da, Chernov, A., Mascotto, L., Russo, A., 10.1142/S021820251650038X, Math. Models Methods Appl. Sci. 26 (2016), 1567-1598. (2016) Zbl1344.65109MR3509090DOI10.1142/S021820251650038X
- Veiga, L. Beirão da, Dassi, F., Russo, A., 10.1016/j.camwa.2017.03.021, Comput. Math. Appl. 74 (2017), 1110-1122. (2017) Zbl06890717MR3689939DOI10.1016/j.camwa.2017.03.021
- Veiga, L. Beirão da, Lipnikov, K., Manzini, G., 10.1137/100807764, SIAM J. Numer. Anal. 49 (2011), 1737-1760. (2011) Zbl1242.65215MR2837482DOI10.1137/100807764
- Veiga, L. Beirão da, Lipnikov, K., Manzini, G., 10.1007/978-3-319-02663-3, MS&A. Modeling, Simulation and Applications 11, Springer, Cham (2014). (2014) Zbl1286.65141MR3135418DOI10.1007/978-3-319-02663-3
- Veiga, L. Beirão da, Lovadina, C., Vacca, G., 10.1051/m2an/2016032, ESAIM, Math. Model. Numer. Anal. 51 (2017), 509-535. (2017) Zbl06706760MR3626409DOI10.1051/m2an/2016032
- Veiga, L. Beirão da, Lovadina, C., Vacca, G., 10.1137/17M1132811, SIAM J. Numer. Anal. 56 (2018), 1210-1242. (2018) Zbl06870040MR3796371DOI10.1137/17M1132811
- Veiga, L. Beirão da, Manzini, G., 10.1093/imanum/drt018, IMA J. Numer. Anal. 34 (2014), 759-781. (2014) Zbl1293.65146MR3194807DOI10.1093/imanum/drt018
- Veiga, L. Beirão da, Manzini, G., 10.1051/m2an/2014047, ESAIM, Math. Model. Numer. Anal. 49 (2015), 577-599. (2015) Zbl1346.65056MR3342219DOI10.1051/m2an/2014047
- Veiga, L. Beirão da, Mora, D., Rivera, G., Rodríguez, R., 10.1007/s00211-016-0855-5, Numer. Math. 136 (2017), 725-763. (2017) Zbl06751908MR3660301DOI10.1007/s00211-016-0855-5
- Veiga, L. Beirão da, Russo, A., Vacca, G., The virtual element method with curved edges, Available at https://arxiv.org/abs/1711.04306 29 pages (2017). (2017) MR3939306
- Benedetto, M. F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S., 10.1016/j.jcp.2015.11.034, J. Comput. Phys. 306 (2016), 148-166. (2016) Zbl1351.76048MR3432346DOI10.1016/j.jcp.2015.11.034
- Boffi, D., 10.1017/S0962492910000012, Acta Numerica 19 (2010), 1-120. (2010) Zbl1242.65110MR2652780DOI10.1017/S0962492910000012
- Brezzi, F., Marini, L. D., 10.1016/j.cma.2012.09.012, Comput. Methods Appl. Mech. Eng. 253 (2013), 455-462. (2013) Zbl1297.74049MR3002804DOI10.1016/j.cma.2012.09.012
- Cáceres, E., Gatica, G. N., 10.1016/j.camwa.2017.03.021, IMA J. Numer. Anal. 37 (2017), 296-331. (2017) MR3614887DOI10.1016/j.camwa.2017.03.021
- Cai, Y., Bai, Z., Pask, J. E., Sukumar, N., 10.1016/j.jcp.2013.07.020, J. Comput. Phys. 255 (2013), 16-30. (2013) Zbl1349.81204MR3109776DOI10.1016/j.jcp.2013.07.020
- Cangiani, A., Gardini, F., Manzini, G., 10.1016/j.cma.2010.06.011, Comput. Methods Appl. Mech. Eng. 200 (2011), 1150-1160. (2011) Zbl1225.65106MR2796151DOI10.1016/j.cma.2010.06.011
- Cangiani, A., Gyrya, V., Manzini, G., 10.1137/15M1049531, SIAM J. Numer. Anal. 54 (2016), 3411-3435. (2016) Zbl06662515MR3576570DOI10.1137/15M1049531
- Cangiani, A., Manzini, G., Russo, A., Sukumar, N., 10.1002/nme.4854, Int. J. Numer. Meth. Eng. 102 (2015), 404-436. (2015) Zbl1352.65475MR3340083DOI10.1002/nme.4854
- Cangiani, A., Manzini, G., Sutton, O., 10.1093/imanum/drw036, IMA J. Numer. Anal. Analysis 37 (2017), 1317-1354. (2017) MR3671497DOI10.1093/imanum/drw036
- Chi, H., Veiga, L. Beirão da, Paulino, G. H., 10.1016/j.cma.2016.12.020, Comput. Methods Appl. Mech. Eng. 318 (2017), 148-192. (2017) MR3627175DOI10.1016/j.cma.2016.12.020
- Dassi, F., Mascotto, L., 10.1016/j.camwa.2018.02.005, Comput. Math. Appl. 75 (2018), 3379-3401. (2018) MR3785566DOI10.1016/j.camwa.2018.02.005
- Dauge, M., Benchmark computations for Maxwell equations for the approximation of highly singular solutions, Available at https://perso.univ-rennes1.fr/monique.dauge/benchmax.html (2004). (2004)
- Ern, A., Guermond, J. L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159, Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
- Gardini, F., Manzini, G., Vacca, G., The nonconforming virtual element method for eigenvalue problems, Available at https://arxiv.org/abs/1802.02942 (2018), 22 pages. (2018) MR3959470
- Gardini, F., Vacca, G., 10.1093/imanum/drx063, (to appear) in IMA J. Numer. Anal. DOI10.1093/imanum/drx063
- Grisvard, P., 10.1007/978-3-0348-8625-3_8, Optimization, Optimal Control and Partial Differential Equations V. Barbu et al. Internat. Ser. Numer. Math. 107, Birkhäuser, Basel (1992), 77-84. (1992) Zbl0778.93007MR1223360DOI10.1007/978-3-0348-8625-3_8
- Gross, E. K. U., Dreizler, R. M., 10.1007/978-1-4757-9975-0, Springer Science & Business Media 337 (2013). (2013) MR2743724DOI10.1007/978-1-4757-9975-0
- Kato, T., Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften 132, Springer, Berlin (1976). (1976) Zbl0342.47009MR0407617
- Lipnikov, K., Manzini, G., Shashkov, M., 10.1016/j.jcp.2013.07.031, J. Comput. Phys. 257 (2014), 1163-1227. (2014) Zbl1352.65420MR3133437DOI10.1016/j.jcp.2013.07.031
- Mascotto, L., Perugia, I., Pichler, A., Non-conforming harmonic virtual element method: -and -versions, Available at https://arxiv.org/abs/1801.00578 (2018), 27 pages. (2018) MR3874797
- Mora, D., Rivera, G., Rodríguez, R., 10.1142/S0218202515500372, Math. Models Methods Appl. Sci. 25 (2015), 1421-1445. (2015) Zbl1330.65172MR3340705DOI10.1142/S0218202515500372
- Mora, D., Rivera, G., Rodríguez, R., 10.1016/j.camwa.2017.05.016, Comput. Math. Appl. 74 (2017), 2172-2190. (2017) MR3715326DOI10.1016/j.camwa.2017.05.016
- Mora, D., Rivera, G., Velásquez, I., 10.1051/m2an/2017041, (to appear) in ESAIM Math. Model. Numer. Anal. DOI10.1051/m2an/2017041
- Mora, D., Velásquez, I., A virtual element method for the transmission eigenvalue problem, Available at https://arxiv.org/abs/1803.01979 (2018), 24 pages. (2018) MR3895875
- Pask, J. E., Klein, B. M., Sterne, P. A., Fong, C. Y., 10.1016/S0010-4655(00)00212-5, Comput. Phys. Commun. 135 (2001), 1-34. (2001) Zbl0984.81038MR2700275DOI10.1016/S0010-4655(00)00212-5
- Pask, J. E., Sterne, P. A., 10.1088/0965-0393/13/3/R01, Modelling Simul. Mater. Sci. Eng. 13 (2005), R71--R96. (2005) DOI10.1088/0965-0393/13/3/R01
- Pask, J. E., Sukumar, N., 10.1016/j.eml.2016.11.003, Extreme Mechanics Letters 11 (2017), 8-17. (2017) DOI10.1016/j.eml.2016.11.003
- Pask, J. E., Sukumar, N., Guney, M., Hu, W., Partition-of-unity finite-element method for large scale quantum molecular dynamics on massively parallel computational platforms, Technical report LLNL-TR-470692, Department of Energy LDRD (2011), Available at https://e-reports-ext.llnl.gov/pdf/471660.pdf. (2011)
- Pickett, W. E., 10.1016/0167-7977(89)90002-6, Computer Physics Reports 9 (1989), 115-197. (1989) DOI10.1016/0167-7977(89)90002-6
- Sukumar, N., Pask, J. E., 10.1002/nme.2457, Int. J. Numer. Methods Eng. 77 (2009), 1121-1138. (2009) Zbl1156.81313MR2490728DOI10.1002/nme.2457
- Vacca, G., 10.1016/j.camwa.2016.04.029, Comput. Math. Appl. 74 (2017), 882-898. (2017) MR3689924DOI10.1016/j.camwa.2016.04.029
- Vacca, G., 10.1142/S0218202518500057, Math. Models Methods Appl. Sci. 28 (2018), 159-194. (2018) Zbl06818909MR3737081DOI10.1142/S0218202518500057
- Wriggers, P., Rust, W. T., Reddy, B. D., 10.1007/s00466-016-1331-x, Comput. Mech. 58 (2016), 1039-1050. (2016) Zbl06832903MR3572918DOI10.1007/s00466-016-1331-x
- Yang, W., Ayers, P. W., Density-functional theory, Computational Medicinal Chemistry for Drug Discovery CRC Press, Boca Raton (2003), 103-132. (2003)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.